File size: 80,259 Bytes
6fa4bc9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
{
    "paper_id": "2020",
    "header": {
        "generated_with": "S2ORC 1.0.0",
        "date_generated": "2023-01-19T14:59:47.873442Z"
    },
    "title": "Covid or not Covid? Topic Shift in Information Cascades on Twitter",
    "authors": [
        {
            "first": "Liana",
            "middle": [],
            "last": "Ermakova",
            "suffix": "",
            "affiliation": {
                "laboratory": "",
                "institution": "Universit\u00e9 de Bretagne Occidentale Brest",
                "location": {
                    "postCode": "4249",
                    "country": "France"
                }
            },
            "email": "liana.ermakova@univ-brest.fr"
        },
        {
            "first": "Diana",
            "middle": [],
            "last": "Nurbakova",
            "suffix": "",
            "affiliation": {
                "laboratory": "LIRIS UMR 5205 CNRS INSA Lyon University of Lyon Villeurbanne",
                "institution": "",
                "location": {
                    "country": "France"
                }
            },
            "email": "diana.nurbakova@insa-lyon.fr"
        },
        {
            "first": "Irina",
            "middle": [],
            "last": "Ovchinnikova",
            "suffix": "",
            "affiliation": {},
            "email": "ovchinnikova.ig@1msmu.ru"
        }
    ],
    "year": "",
    "venue": null,
    "identifiers": {},
    "abstract": "Social media have become a valuable source of information. However, its power to shape public opinion can be dangerous, especially in the case of misinformation. The existing studies on misinformation detection hypothesise that the initial message is fake. In contrast, we focus on information distortion occurring in cascades as the initial message is quoted or receives a reply. We show a significant topic shift in information cascades on Twitter during the Covid-19 pandemic providing valuable insights for the automatic analysis of information distortion.",
    "pdf_parse": {
        "paper_id": "2020",
        "_pdf_hash": "",
        "abstract": [
            {
                "text": "Social media have become a valuable source of information. However, its power to shape public opinion can be dangerous, especially in the case of misinformation. The existing studies on misinformation detection hypothesise that the initial message is fake. In contrast, we focus on information distortion occurring in cascades as the initial message is quoted or receives a reply. We show a significant topic shift in information cascades on Twitter during the Covid-19 pandemic providing valuable insights for the automatic analysis of information distortion.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Abstract",
                "sec_num": null
            }
        ],
        "body_text": [
            {
                "text": "Social media is a valuable resource for all sorts of information. However, its power to shape public opinion can provoke serious societal issues such as misinformation. Words or actions by a Public Figure (PF) generate 69% of misinformation in discussions with ordinary users, while PFs themselves are responsible for 20% of the messages containing distorted information (Brennen et al., 2020) . PFs post tweets that are likely to be shared by their followers (Romero et al., 2011) , thus generating information cascades. The periodic repetitions provoke the mutability of information diffusion in the political domain (Shin et al., 2018) . Recent studies show a similarity of distorted information dissemination during the pandemic to the distribution of political misinformation (Pennycook et al., 2020; Pennycook and Rand, 2018) . The repetitions of rumours about conspiracy theories associated with Covid-19 led to the mutability of information; nevertheless, many users ridiculed these theories while repeating the rumors (Ahmed et al., 2020) . During the Covid-19 pandemic, users look for medical information in PF feeds and follow personal stories of infected people who share unverified information because complicated medical texts deter lay readers (Ribeiro et al., 2019) . Mass medical information sharing generates cascades where the probability to distort initial information increases due to omissions and paraphrases. As medical discourse is sensitive to any changes in terminology and text structure made by incompetent people (Nye et al., 2018) , the impact of medical misinformation on social behaviour means that there is a pressing need to understand how it circulates on social media. To reveal crucial issues about Covid-19 that are of importance for lay people we need to understand topic shifts occurring within information cascades about the pandemic. Such understanding allows us to discover a particular lack of medical information and demand for clear explanation of the most important public problems of the current pandemic. In this paper, we present a preliminary study on medical information distortion occurring in cascades on Twitter due to topic shift. Several studies have focused on misinformation during the Covid-19 pandemic (Pennycook et al., 2020; Cuan-Baltazar et al., 2020; Nurbakova et al., 2020; Smith et al., 2020; Kouzy et al., 2020; Krause et al., 2020; Tasnim et al., 2020; Erku et al., 2020) , but to the best of our knowledge, they assume that the initial message in a cascade is fake and do not study the mechanism of medical information distortion.",
                "cite_spans": [
                    {
                        "start": 371,
                        "end": 393,
                        "text": "(Brennen et al., 2020)",
                        "ref_id": "BIBREF3"
                    },
                    {
                        "start": 460,
                        "end": 481,
                        "text": "(Romero et al., 2011)",
                        "ref_id": "BIBREF18"
                    },
                    {
                        "start": 619,
                        "end": 638,
                        "text": "(Shin et al., 2018)",
                        "ref_id": "BIBREF19"
                    },
                    {
                        "start": 781,
                        "end": 805,
                        "text": "(Pennycook et al., 2020;",
                        "ref_id": "BIBREF16"
                    },
                    {
                        "start": 806,
                        "end": 831,
                        "text": "Pennycook and Rand, 2018)",
                        "ref_id": "BIBREF15"
                    },
                    {
                        "start": 1027,
                        "end": 1047,
                        "text": "(Ahmed et al., 2020)",
                        "ref_id": "BIBREF1"
                    },
                    {
                        "start": 1259,
                        "end": 1281,
                        "text": "(Ribeiro et al., 2019)",
                        "ref_id": "BIBREF17"
                    },
                    {
                        "start": 1543,
                        "end": 1561,
                        "text": "(Nye et al., 2018)",
                        "ref_id": "BIBREF14"
                    },
                    {
                        "start": 2264,
                        "end": 2288,
                        "text": "(Pennycook et al., 2020;",
                        "ref_id": "BIBREF16"
                    },
                    {
                        "start": 2289,
                        "end": 2316,
                        "text": "Cuan-Baltazar et al., 2020;",
                        "ref_id": "BIBREF6"
                    },
                    {
                        "start": 2317,
                        "end": 2340,
                        "text": "Nurbakova et al., 2020;",
                        "ref_id": "BIBREF13"
                    },
                    {
                        "start": 2341,
                        "end": 2360,
                        "text": "Smith et al., 2020;",
                        "ref_id": "BIBREF21"
                    },
                    {
                        "start": 2361,
                        "end": 2380,
                        "text": "Kouzy et al., 2020;",
                        "ref_id": "BIBREF9"
                    },
                    {
                        "start": 2381,
                        "end": 2401,
                        "text": "Krause et al., 2020;",
                        "ref_id": "BIBREF11"
                    },
                    {
                        "start": 2402,
                        "end": 2422,
                        "text": "Tasnim et al., 2020;",
                        "ref_id": "BIBREF22"
                    },
                    {
                        "start": 2423,
                        "end": 2441,
                        "text": "Erku et al., 2020)",
                        "ref_id": "BIBREF7"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "We aim to answer two research questions: RQ1: What are PF tweets on healthcare topics that generate information cascades? RQ2: How does a transformation of the initial tweet involve misinformation?",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "We collected 10M tweets in English about the controversy surrounding Covid-19 medical treatment published between 30/03/20-13/07/20 by querying Twitter API with the keywords, such as [chloroquine, hydroxychloroquine, HCQ, Hydroxychloroquinum, azithromicyn, Raoult, remdesivir, tocilizumab] 1 (Noel et al., 2020) . The data contained 141,866 original tweets, the rest are retweets 2 . As we focused on the analysis of information cascades (2 * 10 4 ), we only considered a subset of the dataset. First, we determined the initial tweets of the cascades among the union of 10 3 the most retweeted and 10 3 the most quoted tweets (1,356 unique tweet IDs). Then we added cascades hops, i.e. tweets with fields quoted status.id or in reply to status id containing initial tweet IDs. The maximal cascade depth with the initial tweet in the resulting dataset is 10 (see examples in Fig.1 ). For further analysis, we considered the field text.",
                "cite_spans": [
                    {
                        "start": 292,
                        "end": 311,
                        "text": "(Noel et al., 2020)",
                        "ref_id": "BIBREF12"
                    }
                ],
                "ref_spans": [
                    {
                        "start": 874,
                        "end": 879,
                        "text": "Fig.1",
                        "ref_id": null
                    }
                ],
                "eq_spans": [],
                "section": "Materials and Methods for Detection of Topic Shift and Information Distortion",
                "sec_num": "2"
            },
            {
                "text": "We analysed topic shift within information cascades by comparing (1) two neighbouring hops within a cascade \u2206 (i\u22121) (Fig. 2(a) ) and (2) each hop within a cascade with the initial tweet \u2206 (0) (Fig. 2(b) ). To analyse topic shift, we encode tweets with the state-of-the-art sentence embedding model USE (Universal Sentence Encoder) (Cer et al., 2018) . Then, we computed the cosine similarity between USE embeddings (Singhal, 2001 ) and transformed it into distance by subtracting the obtained values from 1.",
                "cite_spans": [
                    {
                        "start": 331,
                        "end": 349,
                        "text": "(Cer et al., 2018)",
                        "ref_id": "BIBREF4"
                    },
                    {
                        "start": 415,
                        "end": 429,
                        "text": "(Singhal, 2001",
                        "ref_id": "BIBREF20"
                    }
                ],
                "ref_spans": [
                    {
                        "start": 116,
                        "end": 126,
                        "text": "(Fig. 2(a)",
                        "ref_id": null
                    },
                    {
                        "start": 192,
                        "end": 202,
                        "text": "(Fig. 2(b)",
                        "ref_id": null
                    }
                ],
                "eq_spans": [],
                "section": "Materials and Methods for Detection of Topic Shift and Information Distortion",
                "sec_num": "2"
            },
            {
                "text": "Initial @elonmusk Is the red pill made by the same manufacturers as hydroxychloroquine? Maybe you should take one of these instead: https://t.co/Z1KKLOS9XE",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Take the red pill",
                "sec_num": null
            },
            {
                "text": "\u2206 (i\u22121) = 0.51, \u2206 (0) = 0.51",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Take the red pill",
                "sec_num": null
            },
            {
                "text": "Oh! Hydroxychloroquine comes in a somewhat red blister pack. Thanks @elonmusk https://t.co/kh7uupksuV",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "1st Hop",
                "sec_num": null
            },
            {
                "text": "\u2206 (i\u22121) = 0.8, \u2206 (0) = 0.8",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "1st Hop",
                "sec_num": null
            },
            {
                "text": "1st Hop @Koyczan @elonmusk The thing is, hydroxychloroquine has been shown with a 98% effective rate to lessen symptoms and keep people from dying by the latest French study of over 1000 patients. (Not the earlier incomplete study that the Trump haters all jumped on. They would rather see people die.)",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "1st Hop",
                "sec_num": null
            },
            {
                "text": "\u2206 (i\u22121) = 0.92, \u2206 (0) = 0.99",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "1st Hop",
                "sec_num": null
            },
            {
                "text": "2nd Hop @Koyczan @elonmusk hydroxychloroquine the antimalarial? what does that have to do with taking the red pill? you realize its not a literal pill and is in fact a metaphor for seeing things from a broader perspective.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "1st Hop",
                "sec_num": null
            },
            {
                "text": "\u2206 (i\u22121) = 0.6, \u2206 (0) = 0.46",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "1st Hop",
                "sec_num": null
            },
            {
                "text": "Jack about to change his blue check-mark policy? We don't need a #vaccine. We need to build up our immune systems with vitamins & minerals & take hydroxychloroquine if required.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "2nd Hop",
                "sec_num": null
            },
            {
                "text": "\u2206 (i\u22121) = 0.81, \u2206 (0) = 0.74 2nd Hop @VincentCrypt46 *cough* https://t.co/cQzxif9pqL \u2206 (i\u22121) = 0.57, \u2206 (0) = 0.89",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "2nd Hop",
                "sec_num": null
            },
            {
                "text": "\u2206 (i\u22121) = 0.7 \u2206 (0) = 0.7",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "2nd Hop",
                "sec_num": null
            },
            {
                "text": "1st Hop",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "2nd Hop",
                "sec_num": null
            },
            {
                "text": "It appears this dimwit has not gotten the memo.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "2nd Hop",
                "sec_num": null
            },
            {
                "text": "\u2206 (i\u22121) = 0.94, \u2206 (0) = 0.9",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "2nd Hop",
                "sec_num": null
            },
            {
                "text": "2nd Hop @WillCumberland1 @KatiePavlich @hollandcourtney The reason the right loves #Hydroxychloroquine so much is because it's what morons think a big sciencey-word sounds like",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "2nd Hop",
                "sec_num": null
            },
            {
                "text": "\u2206 (i\u22121) = 0.81, \u2206 (0) = 0.92",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "2nd Hop",
                "sec_num": null
            },
            {
                "text": "2nd Hop @KalaikiMele @WillCumberland1 @KatiePavlich @hollandcourtney No. It's because of given towards the beginning of the virus Hydroxychloroquine is very effective. It's about 70 year's old and cheap.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "2nd Hop",
                "sec_num": null
            },
            {
                "text": "Big pharma doesn't want that . Follow the",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "2nd Hop",
                "sec_num": null
            },
            {
                "text": "\u2206 (i\u22121) = 0.78, \u2206 (0) = 0.67 3rd Hop @thegordonkerr @USAmbUK @SteveBakerHW @BorisJohnson",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "2nd Hop",
                "sec_num": null
            },
            {
                "text": "What a moronic statement. I can keep myself alive and I don't need you or any State to do it for me. Thanks for your concern and with the greatest of respect, mind your own bloody business https://t.co/EkY5PcOt09",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "2nd Hop",
                "sec_num": null
            },
            {
                "text": "\u2206 (i\u22121) = 0.75, \u2206 (0) = 0.82",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "2nd Hop",
                "sec_num": null
            },
            {
                "text": "2nd Hop To identify information distortion types in cascades, we manually performed semantic analysis of tweet content. We examined key term distribution in cascades, explored their context in tweets and verified logical relations among medical terminology (see Table 1 ). The context analysis helped to recognise term substitutions and the substitution analysis to detect information distortion w.r.t. the initial tweet.",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 262,
                        "end": 269,
                        "text": "Table 1",
                        "ref_id": "TABREF0"
                    }
                ],
                "eq_spans": [],
                "section": "2nd Hop",
                "sec_num": null
            },
            {
                "text": "Our analysis also leans on topic modelling. We used Latent Dirichlet Allocation, LDA (Hoffman et al., 2010) from the scikit-learn tool. As tweets are short, we considered only the first topic. (Abd-Alrazaq et al., 2020) distinguish four main discussion themes on Twitter during the current pandemic: origin of the virus; its sources; its impact on people, countries, and the economy; and ways of mitigating the risk of infection. This set lacks medical disease description and ways to treat diagnosis, drugs, etc) . Thus, we were also interested in references to other disease related terms (DRT) within cascades, as they can indicate distortion. To examine them, we extracted a list of hyponyms of the word disease from WordNet corpus accessed via NLTK library, to which we added terms like plague, swine.flu, bird.flu, hiv, malaria, cough, wuhanflu, sars, cardiac.disease, china.flu, covid, coronovirus, cancer, obesity, diabete. We checked the appearance of these terms in the texts. In addition, we investigated the context in which these DRTs were mentioned such as: hydroxychloroquine (HCQ), symptom, treatment, prevention, propagation, study, complication, epidemic, side effect, risk group, synonyms, plague reference, other issues. Each context is defined by a set of terms (see Table 1 ). We then looked at the co-occurrence of DRTs and context terms in a tweet in order to predict the DRT context. This allowed us to gain a better understanding of topic shift related to references of other diseases.",
                "cite_spans": [
                    {
                        "start": 85,
                        "end": 107,
                        "text": "(Hoffman et al., 2010)",
                        "ref_id": "BIBREF8"
                    },
                    {
                        "start": 491,
                        "end": 501,
                        "text": "diagnosis,",
                        "ref_id": null
                    },
                    {
                        "start": 502,
                        "end": 508,
                        "text": "drugs,",
                        "ref_id": null
                    },
                    {
                        "start": 509,
                        "end": 513,
                        "text": "etc)",
                        "ref_id": null
                    }
                ],
                "ref_spans": [
                    {
                        "start": 1288,
                        "end": 1295,
                        "text": "Table 1",
                        "ref_id": "TABREF0"
                    }
                ],
                "eq_spans": [],
                "section": "2nd Hop",
                "sec_num": null
            },
            {
                "text": "We identified the top-10 words characterising the first topic of each hop using LDA. We represented each hop as a binary vector built over the words of all hops. For visualisation, we applied Principle Component Analysis (PCA) (Tipping and Bishop, 1999) with two variables (see Fig. 3 ). Note that the first three hops are rather distant from the initial tweet, while the fourth hop is quite close to the initial tweet (its role is not clear yet). Based on our analysis, 3,939 out of 21,585 unique tweets of cascades contain DRTs. Table 1 summarises the frequency of the terms and the contexts in which they were primarily used 3 . HCQ is the most used context. It brings up DRTs such as lupus, rheumatoid arthritis, malaria, heart attack, respiratory disease, etc. Chloroquine often substituted its derivative HCQ, as in the E. Musk's cascade about the research of French microbiologist D. Raoult. The terms corona and sars are often used to refer to Covid-19. As for the treatment context, the most typical DRTs are cancer, aids, influeza. Note that a given term is often used in multiple contexts but here, we report the dominant one. Thus, HCQ was discussed in the cascades regardless of their initial tweet and the PF who initiated them.",
                "cite_spans": [
                    {
                        "start": 227,
                        "end": 253,
                        "text": "(Tipping and Bishop, 1999)",
                        "ref_id": "BIBREF23"
                    }
                ],
                "ref_spans": [
                    {
                        "start": 278,
                        "end": 284,
                        "text": "Fig. 3",
                        "ref_id": null
                    },
                    {
                        "start": 531,
                        "end": 538,
                        "text": "Table 1",
                        "ref_id": "TABREF0"
                    }
                ],
                "eq_spans": [],
                "section": "Results",
                "sec_num": "3"
            },
            {
                "text": "Information cascades are rarely evoked by healthcare professionals (HS) (identified by their profile information) since they are less active on Twitter than politicians. HS quotes are often misinterpreted and their research results are misrepresented. Though most of the cascades in which HS took part were initiated by journalists, HS tweets were able to terminate an information cascade 4 by providing relevant information and ending discussion. Cascade terminators often come from the professional community (Ziegelmeyer et al., 2010) . In Fig. 2b , distances between initial tweets and the last hops of cascades show essential semantic differences revealing topic shifts. Hops in 'heads' of deep cascades are closer to their initial tweets than those in 'tails'. As distances between neighbouring hops show more similarity to each other than to their initial tweet ( Fig. 2a ), Figure 3 : PCA on the first LDA topic hops accumulate information mutability. The last hop is able to exhaust the cascade new topic. Medical information is distorted via erroneous logical conclusions and mental operations of oversimplification, overgeneralisation, exaggeration, substitution, omission of facts, insertion of erroneous conclusions, misuse of medical concepts and distortion of their connections. The instances of the distortions occur in comments on the initial tweet and hops of cascades generated by the PF tweets. In fragments of cascades generated by comments on PF tweets in Fig. 1 , distortion and misinformation appear due to oversimplification and distortion of logical links. Omission of facts is connected to oversimplification: HCQ efficacy in the Covid-19 treatment depends on patient anamnesis. Misinformation appears when a user did not provide a link to results of a French study he referred to while reacting on a red pill. The red pill meme reveals an unpleasant truth and is derived from a scene in the film The Matrix; an insertion of an erroneous conclusion occurred in comments where red pill is associated with HCQ. Ordinary users exaggerate consequences of government decisions. They politicise and criminalise these actions shifting the topic to political and business disputes (RT @TribeforFreedom: Cuomo is dedicated to a vaccine (Bill Gates) So he does not allow the use of hydroxychloroquine). Overgeneralisation often appears in references to a personal experience when a single fact was considered as a trend 5 .",
                "cite_spans": [
                    {
                        "start": 511,
                        "end": 537,
                        "text": "(Ziegelmeyer et al., 2010)",
                        "ref_id": "BIBREF24"
                    }
                ],
                "ref_spans": [
                    {
                        "start": 543,
                        "end": 550,
                        "text": "Fig. 2b",
                        "ref_id": null
                    },
                    {
                        "start": 871,
                        "end": 878,
                        "text": "Fig. 2a",
                        "ref_id": null
                    },
                    {
                        "start": 882,
                        "end": 890,
                        "text": "Figure 3",
                        "ref_id": null
                    },
                    {
                        "start": 1478,
                        "end": 1484,
                        "text": "Fig. 1",
                        "ref_id": null
                    }
                ],
                "eq_spans": [],
                "section": "Results",
                "sec_num": "3"
            },
            {
                "text": "A topic shift is like the broken telephone effect (Boyd et al., 2010) when the message is altered during transmission, a typical cascade feature (Ribeiro et al., 2019) . Thus, we showed that through this effect, PFs influence misinformation distribution on Twitter regardless of the quality of the information in their initial tweet. Users consider HSs as sources of 'raw information', which needs PF evaluation and approval. An interesting finding is that medical experts were able to stop the development of cascades by providing their factual and knowledgeable opinion. Intellectuals have the most influence on ordinary users' evaluation of the drugs efficacy research that is similar to the results of the cascades study in (Cha et al., 2010) . We see the effect in the cascade evoked by comments on Musk's tweet. In the contexts of DRTs, we discovered the instances of medical information distortion. In contrast to previous works mainly focused on the initial spreading of fake news (Ahmed et al., 2020; Brennen et al., 2020) , here we clarified the mechanism of the medical information distortion during the Covid-19 pandemic by analysing topic shifts within cascades. Usually, the medical topic is shifted to political and business disputes. We showed that cascade hops accumulate mutability of information. We found that after a noticeable topic shift occurring in the first 3 hops, there is a return to the original topic. Through context analysis, we improved the list of topics of (Abd-Alrazaq et al., 2020) adding those that are sensitive to medical information distortion. Our analysis provides valuable insights for the automatic detection and classification of medical information distortion.",
                "cite_spans": [
                    {
                        "start": 50,
                        "end": 69,
                        "text": "(Boyd et al., 2010)",
                        "ref_id": "BIBREF2"
                    },
                    {
                        "start": 145,
                        "end": 167,
                        "text": "(Ribeiro et al., 2019)",
                        "ref_id": "BIBREF17"
                    },
                    {
                        "start": 728,
                        "end": 746,
                        "text": "(Cha et al., 2010)",
                        "ref_id": "BIBREF5"
                    },
                    {
                        "start": 989,
                        "end": 1009,
                        "text": "(Ahmed et al., 2020;",
                        "ref_id": "BIBREF1"
                    },
                    {
                        "start": 1010,
                        "end": 1031,
                        "text": "Brennen et al., 2020)",
                        "ref_id": "BIBREF3"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Conclusions",
                "sec_num": "4"
            },
            {
                "text": "The query was updated throughout the collection period based on new information about Covid-19 and its possible treatment. 2 Some tweets attained 422K retweets, e.g. https://bit.ly/32TPeSt or https://bit.ly/3gYDcfE",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "",
                "sec_num": null
            },
            {
                "text": "We intentionally excluded the term 'covid' from the plot, as it is the main topic of the cascades (mentioned in 2,200 texts).",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "",
                "sec_num": null
            },
            {
                "text": "Example: @eugenegu Hydroxychloroquine has known side effects including prolonging the heart QT interval (time between the Q wave and the T wave on an EKG), which is the time it takes for the ventricles to contract and relax. QT prolongation can cause Torsades de Pointes, a deadly heart rhythm 5 Example: HYDROXYCHLOROQUINE cured my cousin and his wife, after 10 days of insurmountable suffering, in a matter of 24 hours...and he had existing heart issues. Did great",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "",
                "sec_num": null
            }
        ],
        "back_matter": [],
        "bib_entries": {
            "BIBREF0": {
                "ref_id": "b0",
                "title": "Top Concerns of Tweeters During the COVID-19 Pandemic: Infoveillance Study",
                "authors": [
                    {
                        "first": "A",
                        "middle": [],
                        "last": "Abd-Alrazaq",
                        "suffix": ""
                    },
                    {
                        "first": "D",
                        "middle": [],
                        "last": "Alhuwail",
                        "suffix": ""
                    },
                    {
                        "first": "M",
                        "middle": [],
                        "last": "Househ",
                        "suffix": ""
                    },
                    {
                        "first": "M",
                        "middle": [],
                        "last": "Hamdi",
                        "suffix": ""
                    },
                    {
                        "first": "Z",
                        "middle": [],
                        "last": "Shah",
                        "suffix": ""
                    }
                ],
                "year": 2020,
                "venue": "J Med Internet Res",
                "volume": "22",
                "issue": "4",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "A. Abd-Alrazaq, D. Alhuwail, M. Househ, M. Hamdi, and Z. Shah. 2020. Top Concerns of Tweeters During the COVID-19 Pandemic: Infoveillance Study. J Med Internet Res, 22(4):e19016, April.",
                "links": null
            },
            "BIBREF1": {
                "ref_id": "b1",
                "title": "COVID-19 and the 5G Conspiracy Theory: Social Network Analysis of Twitter Data",
                "authors": [
                    {
                        "first": "W",
                        "middle": [],
                        "last": "Ahmed",
                        "suffix": ""
                    },
                    {
                        "first": "J",
                        "middle": [],
                        "last": "Vidal-Alaball",
                        "suffix": ""
                    },
                    {
                        "first": "J",
                        "middle": [],
                        "last": "Downing",
                        "suffix": ""
                    },
                    {
                        "first": "F",
                        "middle": [
                            "L"
                        ],
                        "last": "Segu\u00ed",
                        "suffix": ""
                    }
                ],
                "year": 2020,
                "venue": "Journal of Medical Internet Research",
                "volume": "22",
                "issue": "5",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "W. Ahmed, J. Vidal-Alaball, J. Downing, and F.L. Segu\u00ed. 2020. COVID-19 and the 5G Conspiracy Theory: Social Network Analysis of Twitter Data. Journal of Medical Internet Research, 22(5):e19458.",
                "links": null
            },
            "BIBREF2": {
                "ref_id": "b2",
                "title": "Tweet, Tweet, Retweet: Conversational Aspects of Retweeting on Twitter",
                "authors": [
                    {
                        "first": "D",
                        "middle": [],
                        "last": "Boyd",
                        "suffix": ""
                    },
                    {
                        "first": "S",
                        "middle": [],
                        "last": "Golder",
                        "suffix": ""
                    },
                    {
                        "first": "G",
                        "middle": [],
                        "last": "Lotan",
                        "suffix": ""
                    }
                ],
                "year": 2010,
                "venue": "2010 43rd Hawaii International Conference on System Sciences",
                "volume": "",
                "issue": "",
                "pages": "1530--1605",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "D. Boyd, S. Golder, and G. Lotan. 2010. Tweet, Tweet, Retweet: Conversational Aspects of Retweeting on Twitter. In 2010 43rd Hawaii International Conference on System Sciences, pages 1-10, January. ISSN: 1530-1605.",
                "links": null
            },
            "BIBREF3": {
                "ref_id": "b3",
                "title": "Types, Sources, and Claims of COVID-19 Misinformation",
                "authors": [
                    {
                        "first": "J",
                        "middle": [
                            "S"
                        ],
                        "last": "Brennen",
                        "suffix": ""
                    },
                    {
                        "first": "F",
                        "middle": [
                            "M"
                        ],
                        "last": "Simon",
                        "suffix": ""
                    },
                    {
                        "first": "P",
                        "middle": [
                            "N"
                        ],
                        "last": "Howard",
                        "suffix": ""
                    },
                    {
                        "first": "R",
                        "middle": [
                            "K"
                        ],
                        "last": "Nielsen",
                        "suffix": ""
                    }
                ],
                "year": 2020,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "J.S. Brennen, F.M. Simon, P.N. Howard, and R.K. Nielsen. 2020. Types, Sources, and Claims of COVID-19 Misinformation. page 13.",
                "links": null
            },
            "BIBREF4": {
                "ref_id": "b4",
                "title": "Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing: System Demonstrations",
                "authors": [
                    {
                        "first": "Daniel",
                        "middle": [],
                        "last": "Cer",
                        "suffix": ""
                    },
                    {
                        "first": "Yinfei",
                        "middle": [],
                        "last": "Yang",
                        "suffix": ""
                    },
                    {
                        "first": "Sheng-Yi",
                        "middle": [],
                        "last": "Kong",
                        "suffix": ""
                    },
                    {
                        "first": "Nan",
                        "middle": [],
                        "last": "Hua",
                        "suffix": ""
                    },
                    {
                        "first": "Nicole",
                        "middle": [],
                        "last": "Limtiaco",
                        "suffix": ""
                    },
                    {
                        "first": "Rhomni",
                        "middle": [],
                        "last": "St",
                        "suffix": ""
                    },
                    {
                        "first": "Noah",
                        "middle": [],
                        "last": "John",
                        "suffix": ""
                    },
                    {
                        "first": "Mario",
                        "middle": [],
                        "last": "Constant",
                        "suffix": ""
                    },
                    {
                        "first": "Steve",
                        "middle": [],
                        "last": "Guajardo-Cespedes",
                        "suffix": ""
                    },
                    {
                        "first": "Chris",
                        "middle": [],
                        "last": "Yuan",
                        "suffix": ""
                    },
                    {
                        "first": "Brian",
                        "middle": [],
                        "last": "Tar",
                        "suffix": ""
                    },
                    {
                        "first": "Ray",
                        "middle": [],
                        "last": "Strope",
                        "suffix": ""
                    },
                    {
                        "first": "",
                        "middle": [],
                        "last": "Kurzweil",
                        "suffix": ""
                    }
                ],
                "year": 2018,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "169--174",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Daniel Cer, Yinfei Yang, Sheng-yi Kong, Nan Hua, Nicole Limtiaco, Rhomni St. John, Noah Constant, Mario Guajardo-Cespedes, Steve Yuan, Chris Tar, Brian Strope, and Ray Kurzweil. 2018. Universal Sentence En- coder for English. In Proceedings of the 2018 Conference on Empirical Methods in Natural Language Process- ing: System Demonstrations, pages 169-174, Brussels, Belgium, November. Association for Computational Linguistics.",
                "links": null
            },
            "BIBREF5": {
                "ref_id": "b5",
                "title": "Measuring user influence in twitter: The million follower fallacy",
                "authors": [
                    {
                        "first": "Meeyoung",
                        "middle": [],
                        "last": "Cha",
                        "suffix": ""
                    },
                    {
                        "first": "Hamed",
                        "middle": [],
                        "last": "Haddadi",
                        "suffix": ""
                    },
                    {
                        "first": "Fabr\u00edcio",
                        "middle": [],
                        "last": "Benevenuto",
                        "suffix": ""
                    },
                    {
                        "first": "P",
                        "middle": [
                            "Krishna"
                        ],
                        "last": "Gummadi",
                        "suffix": ""
                    }
                ],
                "year": 2010,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Meeyoung Cha, Hamed Haddadi, Fabr\u00edcio Benevenuto, and P. Krishna Gummadi. 2010. Measuring user influence in twitter: The million follower fallacy.",
                "links": null
            },
            "BIBREF6": {
                "ref_id": "b6",
                "title": "):e18444. Company: JMIR Public Health and Surveillance Distributor: JMIR Public Health and Surveillance Institution: JMIR Public Health and Surveillance Label",
                "authors": [
                    {
                        "first": "Jose",
                        "middle": [],
                        "last": "Yunam Cuan-Baltazar",
                        "suffix": ""
                    },
                    {
                        "first": "Maria",
                        "middle": [
                            "Jos\u00e9"
                        ],
                        "last": "Mu\u00f1oz-Perez",
                        "suffix": ""
                    },
                    {
                        "first": "Carolina",
                        "middle": [],
                        "last": "Robledo-Vega",
                        "suffix": ""
                    },
                    {
                        "first": "Maria",
                        "middle": [
                            "Fernanda"
                        ],
                        "last": "P\u00e9rez-Zepeda",
                        "suffix": ""
                    },
                    {
                        "first": "Elena",
                        "middle": [],
                        "last": "Soto-Vega",
                        "suffix": ""
                    }
                ],
                "year": 2020,
                "venue": "JMIR Public Health and Surveillance",
                "volume": "6",
                "issue": "2",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Jose Yunam Cuan-Baltazar, Maria Jos\u00e9 Mu\u00f1oz-Perez, Carolina Robledo-Vega, Maria Fernanda P\u00e9rez-Zepeda, and Elena Soto-Vega. 2020. Misinformation of COVID-19 on the Internet: Infodemiology Study. JMIR Public Health and Surveillance, 6(2):e18444. Company: JMIR Public Health and Surveillance Distributor: JMIR Public Health and Surveillance Institution: JMIR Public Health and Surveillance Label: JMIR Public Health and Surveillance Publisher: JMIR Publications Inc., Toronto, Canada.",
                "links": null
            },
            "BIBREF7": {
                "ref_id": "b7",
                "title": "When fear and misinformation go viral: Pharmacists' role in deterring medication misinformation during the 'infodemic' surrounding COVID-19",
                "authors": [
                    {
                        "first": "Daniel",
                        "middle": [
                            "A"
                        ],
                        "last": "Erku",
                        "suffix": ""
                    },
                    {
                        "first": "A",
                        "middle": [],
                        "last": "Sewunet",
                        "suffix": ""
                    },
                    {
                        "first": "Solomon",
                        "middle": [],
                        "last": "Belachew",
                        "suffix": ""
                    },
                    {
                        "first": "Mahipal",
                        "middle": [],
                        "last": "Abrha",
                        "suffix": ""
                    },
                    {
                        "first": "Jackson",
                        "middle": [],
                        "last": "Sinnollareddy",
                        "suffix": ""
                    },
                    {
                        "first": "Kathryn",
                        "middle": [
                            "J"
                        ],
                        "last": "Thomas",
                        "suffix": ""
                    },
                    {
                        "first": "Wubshet",
                        "middle": [
                            "H"
                        ],
                        "last": "Steadman",
                        "suffix": ""
                    },
                    {
                        "first": "",
                        "middle": [],
                        "last": "Tesfaye",
                        "suffix": ""
                    }
                ],
                "year": 2020,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Daniel A. Erku, Sewunet A. Belachew, Solomon Abrha, Mahipal Sinnollareddy, Jackson Thomas, Kathryn J. Steadman, and Wubshet H. Tesfaye. 2020. When fear and misinformation go viral: Pharmacists' role in deterring medication misinformation during the 'infodemic' surrounding COVID-19. Research in Social and Administrative Pharmacy.",
                "links": null
            },
            "BIBREF8": {
                "ref_id": "b8",
                "title": "Online learning for latent dirichlet allocation",
                "authors": [
                    {
                        "first": "Matthew",
                        "middle": [
                            "D"
                        ],
                        "last": "Hoffman",
                        "suffix": ""
                    },
                    {
                        "first": "David",
                        "middle": [
                            "M"
                        ],
                        "last": "Blei",
                        "suffix": ""
                    },
                    {
                        "first": "Francis",
                        "middle": [
                            "R"
                        ],
                        "last": "Bach",
                        "suffix": ""
                    }
                ],
                "year": 2010,
                "venue": "Advances in Neural Information Processing Systems 23: 24th Annual Conference on Neural Information Processing Systems 2010. Proceedings of a meeting held 6-9",
                "volume": "",
                "issue": "",
                "pages": "856--864",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Matthew D. Hoffman, David M. Blei, and Francis R. Bach. 2010. Online learning for latent dirichlet allocation. In John D. Lafferty, Christopher K. I. Williams, John Shawe-Taylor, Richard S. Zemel, and Aron Culotta, editors, Advances in Neural Information Processing Systems 23: 24th Annual Conference on Neural Information Processing Systems 2010. Proceedings of a meeting held 6-9 December 2010, Vancouver, British Columbia, Canada, pages 856-864. Curran Associates, Inc.",
                "links": null
            },
            "BIBREF9": {
                "ref_id": "b9",
                "title": "Coronavirus Goes Viral: Quantifying the COVID-19",
                "authors": [
                    {
                        "first": "Ramez",
                        "middle": [],
                        "last": "Kouzy",
                        "suffix": ""
                    },
                    {
                        "first": "Joseph",
                        "middle": [],
                        "last": "Abi Jaoude",
                        "suffix": ""
                    },
                    {
                        "first": "Afif",
                        "middle": [],
                        "last": "Kraitem",
                        "suffix": ""
                    },
                    {
                        "first": "Molly",
                        "middle": [
                            "B El"
                        ],
                        "last": "Alam",
                        "suffix": ""
                    },
                    {
                        "first": "Basil",
                        "middle": [],
                        "last": "Karam",
                        "suffix": ""
                    },
                    {
                        "first": "Elio",
                        "middle": [],
                        "last": "Adib",
                        "suffix": ""
                    },
                    {
                        "first": "Jabra",
                        "middle": [],
                        "last": "Zarka",
                        "suffix": ""
                    },
                    {
                        "first": "Cindy",
                        "middle": [],
                        "last": "Traboulsi",
                        "suffix": ""
                    },
                    {
                        "first": "Elie",
                        "middle": [
                            "W"
                        ],
                        "last": "Akl",
                        "suffix": ""
                    },
                    {
                        "first": "Khalil",
                        "middle": [],
                        "last": "Baddour",
                        "suffix": ""
                    }
                ],
                "year": 2020,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Ramez Kouzy, Joseph Abi Jaoude, Afif Kraitem, Molly B. El Alam, Basil Karam, Elio Adib, Jabra Zarka, Cindy Traboulsi, Elie W. Akl, and Khalil Baddour. 2020. Coronavirus Goes Viral: Quantifying the COVID-19",
                "links": null
            },
            "BIBREF11": {
                "ref_id": "b11",
                "title": "Fact-checking as risk communication: the multi-layered risk of misinformation in times of COVID-19",
                "authors": [
                    {
                        "first": "Nicole",
                        "middle": [
                            "M"
                        ],
                        "last": "Krause",
                        "suffix": ""
                    },
                    {
                        "first": "Isabelle",
                        "middle": [],
                        "last": "Freiling",
                        "suffix": ""
                    },
                    {
                        "first": "Becca",
                        "middle": [],
                        "last": "Beets",
                        "suffix": ""
                    },
                    {
                        "first": "Dominique",
                        "middle": [],
                        "last": "Brossard",
                        "suffix": ""
                    }
                ],
                "year": 2020,
                "venue": "Journal of Risk Research",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Nicole M. Krause, Isabelle Freiling, Becca Beets, and Dominique Brossard. 2020. Fact-checking as risk com- munication: the multi-layered risk of misinformation in times of COVID-19. Journal of Risk Research, April. Publisher: Routledge.",
                "links": null
            },
            "BIBREF12": {
                "ref_id": "b12",
                "title": "Alexis Perrier, and Bilel Benbouzid",
                "authors": [
                    {
                        "first": "Marianne",
                        "middle": [],
                        "last": "Noel",
                        "suffix": ""
                    },
                    {
                        "first": "Liana",
                        "middle": [],
                        "last": "Ermakova",
                        "suffix": ""
                    },
                    {
                        "first": "Pedro",
                        "middle": [],
                        "last": "Rammaciotti",
                        "suffix": ""
                    }
                ],
                "year": 2020,
                "venue": "Controverse scientifique",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Marianne Noel, Liana Ermakova, Pedro Rammaciotti, Alexis Perrier, and Bilel Benbouzid. 2020. Controverse scientifique.",
                "links": null
            },
            "BIBREF13": {
                "ref_id": "b13",
                "title": "Understanding the Personality of Contributors to Information Cascades in Social Media in response to COVID-19 Pandemic",
                "authors": [
                    {
                        "first": "Diana",
                        "middle": [],
                        "last": "Nurbakova",
                        "suffix": ""
                    },
                    {
                        "first": "Liana",
                        "middle": [],
                        "last": "Ermakova",
                        "suffix": ""
                    },
                    {
                        "first": "Irina",
                        "middle": [],
                        "last": "Ovchinnikova",
                        "suffix": ""
                    }
                ],
                "year": 2020,
                "venue": "2020 International Conference on Data Mining Workshops, ICDM Workshops 2020",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Diana Nurbakova, Liana Ermakova, and Irina Ovchinnikova. 2020. Understanding the Personality of Contributors to Information Cascades in Social Media in response to COVID-19 Pandemic. In 2020 International Conference on Data Mining Workshops, ICDM Workshops 2020, Sorrento, Italy, November 17-20, 2020, page 8. IEEE.",
                "links": null
            },
            "BIBREF14": {
                "ref_id": "b14",
                "title": "A Corpus with Multi-Level Annotations of Patients, Interventions and Outcomes to Support Language Processing for Medical Literature",
                "authors": [
                    {
                        "first": "B",
                        "middle": [],
                        "last": "Nye",
                        "suffix": ""
                    },
                    {
                        "first": "J",
                        "middle": [
                            "J"
                        ],
                        "last": "Li",
                        "suffix": ""
                    },
                    {
                        "first": "R",
                        "middle": [],
                        "last": "Patel",
                        "suffix": ""
                    },
                    {
                        "first": "Y",
                        "middle": [],
                        "last": "Yang",
                        "suffix": ""
                    },
                    {
                        "first": "I",
                        "middle": [],
                        "last": "Marshall",
                        "suffix": ""
                    },
                    {
                        "first": "A",
                        "middle": [],
                        "last": "Nenkova",
                        "suffix": ""
                    },
                    {
                        "first": "B",
                        "middle": [],
                        "last": "Wallace",
                        "suffix": ""
                    }
                ],
                "year": 2018,
                "venue": "Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics",
                "volume": "1",
                "issue": "",
                "pages": "197--207",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "B. Nye, J.J. Li, R. Patel, Y. Yang, I. Marshall, A. Nenkova, and B. Wallace. 2018. A Corpus with Multi-Level Annotations of Patients, Interventions and Outcomes to Support Language Processing for Medical Literature. In Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pages 197-207, Melbourne, Australia, July. Association for Computational Linguistics.",
                "links": null
            },
            "BIBREF15": {
                "ref_id": "b15",
                "title": "Lazy, Not Biased: Susceptibility to Partisan Fake News Is Better Explained by Lack of Reasoning Than by Motivated Reasoning",
                "authors": [
                    {
                        "first": "G",
                        "middle": [],
                        "last": "Pennycook",
                        "suffix": ""
                    },
                    {
                        "first": "D",
                        "middle": [
                            "G"
                        ],
                        "last": "Rand",
                        "suffix": ""
                    }
                ],
                "year": 2018,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "G. Pennycook and D.G. Rand. 2018. Lazy, Not Biased: Susceptibility to Partisan Fake News Is Better Explained by Lack of Reasoning Than by Motivated Reasoning.",
                "links": null
            },
            "BIBREF16": {
                "ref_id": "b16",
                "title": "Fighting COVID-19 Misinformation on Social Media: Experimental Evidence for a Scalable Accuracy-Nudge Intervention",
                "authors": [
                    {
                        "first": "G",
                        "middle": [],
                        "last": "Pennycook",
                        "suffix": ""
                    },
                    {
                        "first": "J",
                        "middle": [],
                        "last": "Mcphetres",
                        "suffix": ""
                    },
                    {
                        "first": "Y",
                        "middle": [],
                        "last": "Zhang",
                        "suffix": ""
                    },
                    {
                        "first": "J",
                        "middle": [
                            "G"
                        ],
                        "last": "Lu",
                        "suffix": ""
                    },
                    {
                        "first": "D",
                        "middle": [
                            "G"
                        ],
                        "last": "Rand",
                        "suffix": ""
                    }
                ],
                "year": 2020,
                "venue": "Psychological Science",
                "volume": "31",
                "issue": "7",
                "pages": "770--780",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "G. Pennycook, J. McPhetres, Y. Zhang, J.G. Lu, and D.G. Rand. 2020. Fighting COVID-19 Misinformation on Social Media: Experimental Evidence for a Scalable Accuracy-Nudge Intervention. Psychological Science, 31(7):770-780, July. Publisher: SAGE Publications Inc.",
                "links": null
            },
            "BIBREF17": {
                "ref_id": "b17",
                "title": "Message distortion in information cascades",
                "authors": [
                    {
                        "first": "Kristina",
                        "middle": [],
                        "last": "Horta Manoel Ribeiro",
                        "suffix": ""
                    },
                    {
                        "first": "Robert",
                        "middle": [],
                        "last": "Gligoric",
                        "suffix": ""
                    },
                    {
                        "first": "",
                        "middle": [],
                        "last": "West",
                        "suffix": ""
                    }
                ],
                "year": 2019,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "681--692",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Horta Manoel Ribeiro, Kristina Gligoric, and Robert West. 2019. Message distortion in information cascades. page 681-692.",
                "links": null
            },
            "BIBREF18": {
                "ref_id": "b18",
                "title": "Influence and Passivity in Social Media",
                "authors": [
                    {
                        "first": "D",
                        "middle": [
                            "M"
                        ],
                        "last": "Romero",
                        "suffix": ""
                    },
                    {
                        "first": "W",
                        "middle": [],
                        "last": "Galuba",
                        "suffix": ""
                    },
                    {
                        "first": "S",
                        "middle": [],
                        "last": "Asur",
                        "suffix": ""
                    },
                    {
                        "first": "B",
                        "middle": [
                            "A"
                        ],
                        "last": "Huberman",
                        "suffix": ""
                    }
                ],
                "year": 2011,
                "venue": "Dimitrios Gunopulos, Thomas Hofmann, Donato Malerba, and Michalis Vazirgiannis",
                "volume": "",
                "issue": "",
                "pages": "18--33",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "D.M. Romero, W. Galuba, S. Asur, and B.A. Huberman. 2011. Influence and Passivity in Social Media. In Dim- itrios Gunopulos, Thomas Hofmann, Donato Malerba, and Michalis Vazirgiannis, editors, Machine Learning and Knowledge Discovery in Databases, pages 18-33, Berlin, Heidelberg. Springer Berlin Heidelberg.",
                "links": null
            },
            "BIBREF19": {
                "ref_id": "b19",
                "title": "The diffusion of misinformation on social media: Temporal pattern, message, and source",
                "authors": [
                    {
                        "first": "J",
                        "middle": [],
                        "last": "Shin",
                        "suffix": ""
                    },
                    {
                        "first": "L",
                        "middle": [],
                        "last": "Jian",
                        "suffix": ""
                    },
                    {
                        "first": "K",
                        "middle": [],
                        "last": "Driscoll",
                        "suffix": ""
                    },
                    {
                        "first": "F",
                        "middle": [],
                        "last": "Bar",
                        "suffix": ""
                    }
                ],
                "year": 2018,
                "venue": "Computers in Human Behavior",
                "volume": "83",
                "issue": "",
                "pages": "278--287",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "J. Shin, L. Jian, K. Driscoll, and F. Bar. 2018. The diffusion of misinformation on social media: Temporal pattern, message, and source. Computers in Human Behavior, 83:278-287, June.",
                "links": null
            },
            "BIBREF20": {
                "ref_id": "b20",
                "title": "Modern information retrieval: A brief overview",
                "authors": [
                    {
                        "first": "Amit",
                        "middle": [],
                        "last": "Singhal",
                        "suffix": ""
                    }
                ],
                "year": 2001,
                "venue": "IEEE Data Eng. Bull",
                "volume": "24",
                "issue": "",
                "pages": "35--43",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Amit Singhal. 2001. Modern information retrieval: A brief overview. IEEE Data Eng. Bull., 24:35-43.",
                "links": null
            },
            "BIBREF21": {
                "ref_id": "b21",
                "title": "COVID-19: Emerging compassion, courage and resilience in the face of misinformation and adversity",
                "authors": [
                    {
                        "first": "Graeme",
                        "middle": [
                            "D"
                        ],
                        "last": "Smith",
                        "suffix": ""
                    },
                    {
                        "first": "Fowie",
                        "middle": [],
                        "last": "Ng",
                        "suffix": ""
                    },
                    {
                        "first": "William Ho Cheung",
                        "middle": [],
                        "last": "Li",
                        "suffix": ""
                    }
                ],
                "year": 2020,
                "venue": "Journal of Clinical Nursing",
                "volume": "29",
                "issue": "9",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Graeme D. Smith, Fowie Ng, and William Ho Cheung Li. 2020. COVID-19: Emerging compassion, courage and resilience in the face of misinformation and adversity. Journal of Clinical Nursing, 29(9-10):1425, May. Publisher: Wiley-Blackwell.",
                "links": null
            },
            "BIBREF22": {
                "ref_id": "b22",
                "title": "Impact of Rumors and Misinformation on COVID-19 in Social Media",
                "authors": [
                    {
                        "first": "Samia",
                        "middle": [],
                        "last": "Tasnim",
                        "suffix": ""
                    },
                    {
                        "first": "Hoimonty",
                        "middle": [],
                        "last": "Md Mahbub Hossain",
                        "suffix": ""
                    },
                    {
                        "first": "",
                        "middle": [],
                        "last": "Mazumder",
                        "suffix": ""
                    }
                ],
                "year": 2020,
                "venue": "Journal of Preventive Medicine and Public Health",
                "volume": "53",
                "issue": "3",
                "pages": "171--174",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Samia Tasnim, Md Mahbub Hossain, and Hoimonty Mazumder. 2020. Impact of Rumors and Misinformation on COVID-19 in Social Media. Journal of Preventive Medicine and Public Health, 53(3):171-174. Publisher: The Korean Society for Preventive Medicine.",
                "links": null
            },
            "BIBREF23": {
                "ref_id": "b23",
                "title": "Probabilistic principal component analysis",
                "authors": [
                    {
                        "first": "Michael",
                        "middle": [
                            "E"
                        ],
                        "last": "Tipping",
                        "suffix": ""
                    },
                    {
                        "first": "Christopher",
                        "middle": [
                            "M"
                        ],
                        "last": "Bishop",
                        "suffix": ""
                    }
                ],
                "year": 1999,
                "venue": "Journal of the Royal Statistical Society: Series B (Statistical Methodology)",
                "volume": "61",
                "issue": "3",
                "pages": "611--622",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Michael E. Tipping and Christopher M. Bishop. 1999. Probabilistic principal component analysis. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 61(3):611-622.",
                "links": null
            },
            "BIBREF24": {
                "ref_id": "b24",
                "title": "Fragility of information cascades: an experimental study using elicited beliefs",
                "authors": [
                    {
                        "first": "A",
                        "middle": [],
                        "last": "Ziegelmeyer",
                        "suffix": ""
                    },
                    {
                        "first": "F",
                        "middle": [],
                        "last": "Koessler",
                        "suffix": ""
                    },
                    {
                        "first": "J",
                        "middle": [],
                        "last": "Bracht",
                        "suffix": ""
                    },
                    {
                        "first": "E",
                        "middle": [],
                        "last": "Winter",
                        "suffix": ""
                    }
                ],
                "year": 2010,
                "venue": "Experimental Economics",
                "volume": "13",
                "issue": "2",
                "pages": "121--145",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "A. Ziegelmeyer, F. Koessler, J. Bracht, and E. Winter. 2010. Fragility of information cascades: an experimental study using elicited beliefs. Experimental Economics, 13(2):121-145, June.",
                "links": null
            }
        },
        "ref_entries": {
            "FIGREF0": {
                "type_str": "figure",
                "text": "2nd Hop shift to political views distortion of logical connections oversimplification topic shift via ridiculing the opponents overestimating their ignorance misinformation, reference to low-credible source exaggeration \"The overwhelming majority of people recover from this virus.\" -Dr. Fauci Initial @KatiePavlich @hollandcourtney Thanks to Trump and his pushing of #Hydroxychloroquine \u2206 (i\u22121) = 0.91, \u2206 (0) = 0.91 1st Hop 'The majority of people who actually get this infection do not die'-Chris #Whitty, Chief Medical Officer. Not such a deadly virus then is it?",
                "uris": null,
                "num": null
            },
            "FIGREF1": {
                "type_str": "figure",
                "text": "Examples of cascades and information distortion within them Distances (1 \u2212 cos) between: (a) neighbouring hops, (b) hops and initial tweets",
                "uris": null,
                "num": null
            },
            "TABREF0": {
                "html": null,
                "num": null,
                "text": "Disease related terms (DRTs) in cascades and their prevailing context Visualisation of mentions of DRTs Context and terms hcq = {hydroxychloroquine hcq hc azithromycin chloroquine zpack z.pac antimalarial zinc sulfate zithromax} symptom = {symptom congestion bood cough aches lungs fever antibody headache mucus signs asymptomatic respiratory shortness.of.breath symptom.free back.pain diarrhea nausea} .case critically critical.condition severe urgent.care.center emergency icu intensive.care.unit} epidemic = {epidemic pandemic plague zika ebola lockdown locked.down outbreak swine.flu} side effect = {side.effect heart.disease cardiac.problem hallucination psychiatric.symptom vision.loss vomiting loss.of.appetite dizziness slow.heartbeat heart.failure swelling.ankles} risk group = {elderly diabete obesity obese asthma comorbidity 60.plus 60.year} * radius is proportional to # of mentions of a term synonyms = {corona wuhan.virus wuhan.disease sars.cov.2 covid19 covid c19 coronovirus chinese.flu china.flu cv.19 sars.cov sars chinese.plague coronahoax wuhanflu}",
                "content": "<table><tr><td>treatment = {treatment cure curing treat pill medicament</td></tr><tr><td>remedy therapy drug acetaminophen prescribe prescription</td></tr><tr><td>breathlessness medications diagnos recovery}</td></tr><tr><td>prevention = {vaccin mask hand.wash distanc prevention de-</td></tr><tr><td>tection test cover.*mouth self.isol prophylaxis immunity stay-</td></tr><tr><td>home staying.home stay.home prophylactic serum.test preven-</td></tr><tr><td>tative}</td></tr><tr><td>study = {study control.group randomi.ed research treat-</td></tr><tr><td>ment.group trial expert scientific.evidence success.rate sci-</td></tr><tr><td>ence protocol effective.rate placebo}</td></tr><tr><td>complication = {ventilator complication transfusion coma</td></tr><tr><td>hospitalization death severe</td></tr></table>",
                "type_str": "table"
            }
        }
    }
}