File size: 80,259 Bytes
6fa4bc9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 |
{
"paper_id": "2020",
"header": {
"generated_with": "S2ORC 1.0.0",
"date_generated": "2023-01-19T14:59:47.873442Z"
},
"title": "Covid or not Covid? Topic Shift in Information Cascades on Twitter",
"authors": [
{
"first": "Liana",
"middle": [],
"last": "Ermakova",
"suffix": "",
"affiliation": {
"laboratory": "",
"institution": "Universit\u00e9 de Bretagne Occidentale Brest",
"location": {
"postCode": "4249",
"country": "France"
}
},
"email": "liana.ermakova@univ-brest.fr"
},
{
"first": "Diana",
"middle": [],
"last": "Nurbakova",
"suffix": "",
"affiliation": {
"laboratory": "LIRIS UMR 5205 CNRS INSA Lyon University of Lyon Villeurbanne",
"institution": "",
"location": {
"country": "France"
}
},
"email": "diana.nurbakova@insa-lyon.fr"
},
{
"first": "Irina",
"middle": [],
"last": "Ovchinnikova",
"suffix": "",
"affiliation": {},
"email": "ovchinnikova.ig@1msmu.ru"
}
],
"year": "",
"venue": null,
"identifiers": {},
"abstract": "Social media have become a valuable source of information. However, its power to shape public opinion can be dangerous, especially in the case of misinformation. The existing studies on misinformation detection hypothesise that the initial message is fake. In contrast, we focus on information distortion occurring in cascades as the initial message is quoted or receives a reply. We show a significant topic shift in information cascades on Twitter during the Covid-19 pandemic providing valuable insights for the automatic analysis of information distortion.",
"pdf_parse": {
"paper_id": "2020",
"_pdf_hash": "",
"abstract": [
{
"text": "Social media have become a valuable source of information. However, its power to shape public opinion can be dangerous, especially in the case of misinformation. The existing studies on misinformation detection hypothesise that the initial message is fake. In contrast, we focus on information distortion occurring in cascades as the initial message is quoted or receives a reply. We show a significant topic shift in information cascades on Twitter during the Covid-19 pandemic providing valuable insights for the automatic analysis of information distortion.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Abstract",
"sec_num": null
}
],
"body_text": [
{
"text": "Social media is a valuable resource for all sorts of information. However, its power to shape public opinion can provoke serious societal issues such as misinformation. Words or actions by a Public Figure (PF) generate 69% of misinformation in discussions with ordinary users, while PFs themselves are responsible for 20% of the messages containing distorted information (Brennen et al., 2020) . PFs post tweets that are likely to be shared by their followers (Romero et al., 2011) , thus generating information cascades. The periodic repetitions provoke the mutability of information diffusion in the political domain (Shin et al., 2018) . Recent studies show a similarity of distorted information dissemination during the pandemic to the distribution of political misinformation (Pennycook et al., 2020; Pennycook and Rand, 2018) . The repetitions of rumours about conspiracy theories associated with Covid-19 led to the mutability of information; nevertheless, many users ridiculed these theories while repeating the rumors (Ahmed et al., 2020) . During the Covid-19 pandemic, users look for medical information in PF feeds and follow personal stories of infected people who share unverified information because complicated medical texts deter lay readers (Ribeiro et al., 2019) . Mass medical information sharing generates cascades where the probability to distort initial information increases due to omissions and paraphrases. As medical discourse is sensitive to any changes in terminology and text structure made by incompetent people (Nye et al., 2018) , the impact of medical misinformation on social behaviour means that there is a pressing need to understand how it circulates on social media. To reveal crucial issues about Covid-19 that are of importance for lay people we need to understand topic shifts occurring within information cascades about the pandemic. Such understanding allows us to discover a particular lack of medical information and demand for clear explanation of the most important public problems of the current pandemic. In this paper, we present a preliminary study on medical information distortion occurring in cascades on Twitter due to topic shift. Several studies have focused on misinformation during the Covid-19 pandemic (Pennycook et al., 2020; Cuan-Baltazar et al., 2020; Nurbakova et al., 2020; Smith et al., 2020; Kouzy et al., 2020; Krause et al., 2020; Tasnim et al., 2020; Erku et al., 2020) , but to the best of our knowledge, they assume that the initial message in a cascade is fake and do not study the mechanism of medical information distortion.",
"cite_spans": [
{
"start": 371,
"end": 393,
"text": "(Brennen et al., 2020)",
"ref_id": "BIBREF3"
},
{
"start": 460,
"end": 481,
"text": "(Romero et al., 2011)",
"ref_id": "BIBREF18"
},
{
"start": 619,
"end": 638,
"text": "(Shin et al., 2018)",
"ref_id": "BIBREF19"
},
{
"start": 781,
"end": 805,
"text": "(Pennycook et al., 2020;",
"ref_id": "BIBREF16"
},
{
"start": 806,
"end": 831,
"text": "Pennycook and Rand, 2018)",
"ref_id": "BIBREF15"
},
{
"start": 1027,
"end": 1047,
"text": "(Ahmed et al., 2020)",
"ref_id": "BIBREF1"
},
{
"start": 1259,
"end": 1281,
"text": "(Ribeiro et al., 2019)",
"ref_id": "BIBREF17"
},
{
"start": 1543,
"end": 1561,
"text": "(Nye et al., 2018)",
"ref_id": "BIBREF14"
},
{
"start": 2264,
"end": 2288,
"text": "(Pennycook et al., 2020;",
"ref_id": "BIBREF16"
},
{
"start": 2289,
"end": 2316,
"text": "Cuan-Baltazar et al., 2020;",
"ref_id": "BIBREF6"
},
{
"start": 2317,
"end": 2340,
"text": "Nurbakova et al., 2020;",
"ref_id": "BIBREF13"
},
{
"start": 2341,
"end": 2360,
"text": "Smith et al., 2020;",
"ref_id": "BIBREF21"
},
{
"start": 2361,
"end": 2380,
"text": "Kouzy et al., 2020;",
"ref_id": "BIBREF9"
},
{
"start": 2381,
"end": 2401,
"text": "Krause et al., 2020;",
"ref_id": "BIBREF11"
},
{
"start": 2402,
"end": 2422,
"text": "Tasnim et al., 2020;",
"ref_id": "BIBREF22"
},
{
"start": 2423,
"end": 2441,
"text": "Erku et al., 2020)",
"ref_id": "BIBREF7"
}
],
"ref_spans": [],
"eq_spans": [],
"section": "Introduction",
"sec_num": "1"
},
{
"text": "We aim to answer two research questions: RQ1: What are PF tweets on healthcare topics that generate information cascades? RQ2: How does a transformation of the initial tweet involve misinformation?",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Introduction",
"sec_num": "1"
},
{
"text": "We collected 10M tweets in English about the controversy surrounding Covid-19 medical treatment published between 30/03/20-13/07/20 by querying Twitter API with the keywords, such as [chloroquine, hydroxychloroquine, HCQ, Hydroxychloroquinum, azithromicyn, Raoult, remdesivir, tocilizumab] 1 (Noel et al., 2020) . The data contained 141,866 original tweets, the rest are retweets 2 . As we focused on the analysis of information cascades (2 * 10 4 ), we only considered a subset of the dataset. First, we determined the initial tweets of the cascades among the union of 10 3 the most retweeted and 10 3 the most quoted tweets (1,356 unique tweet IDs). Then we added cascades hops, i.e. tweets with fields quoted status.id or in reply to status id containing initial tweet IDs. The maximal cascade depth with the initial tweet in the resulting dataset is 10 (see examples in Fig.1 ). For further analysis, we considered the field text.",
"cite_spans": [
{
"start": 292,
"end": 311,
"text": "(Noel et al., 2020)",
"ref_id": "BIBREF12"
}
],
"ref_spans": [
{
"start": 874,
"end": 879,
"text": "Fig.1",
"ref_id": null
}
],
"eq_spans": [],
"section": "Materials and Methods for Detection of Topic Shift and Information Distortion",
"sec_num": "2"
},
{
"text": "We analysed topic shift within information cascades by comparing (1) two neighbouring hops within a cascade \u2206 (i\u22121) (Fig. 2(a) ) and (2) each hop within a cascade with the initial tweet \u2206 (0) (Fig. 2(b) ). To analyse topic shift, we encode tweets with the state-of-the-art sentence embedding model USE (Universal Sentence Encoder) (Cer et al., 2018) . Then, we computed the cosine similarity between USE embeddings (Singhal, 2001 ) and transformed it into distance by subtracting the obtained values from 1.",
"cite_spans": [
{
"start": 331,
"end": 349,
"text": "(Cer et al., 2018)",
"ref_id": "BIBREF4"
},
{
"start": 415,
"end": 429,
"text": "(Singhal, 2001",
"ref_id": "BIBREF20"
}
],
"ref_spans": [
{
"start": 116,
"end": 126,
"text": "(Fig. 2(a)",
"ref_id": null
},
{
"start": 192,
"end": 202,
"text": "(Fig. 2(b)",
"ref_id": null
}
],
"eq_spans": [],
"section": "Materials and Methods for Detection of Topic Shift and Information Distortion",
"sec_num": "2"
},
{
"text": "Initial @elonmusk Is the red pill made by the same manufacturers as hydroxychloroquine? Maybe you should take one of these instead: https://t.co/Z1KKLOS9XE",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Take the red pill",
"sec_num": null
},
{
"text": "\u2206 (i\u22121) = 0.51, \u2206 (0) = 0.51",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Take the red pill",
"sec_num": null
},
{
"text": "Oh! Hydroxychloroquine comes in a somewhat red blister pack. Thanks @elonmusk https://t.co/kh7uupksuV",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "1st Hop",
"sec_num": null
},
{
"text": "\u2206 (i\u22121) = 0.8, \u2206 (0) = 0.8",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "1st Hop",
"sec_num": null
},
{
"text": "1st Hop @Koyczan @elonmusk The thing is, hydroxychloroquine has been shown with a 98% effective rate to lessen symptoms and keep people from dying by the latest French study of over 1000 patients. (Not the earlier incomplete study that the Trump haters all jumped on. They would rather see people die.)",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "1st Hop",
"sec_num": null
},
{
"text": "\u2206 (i\u22121) = 0.92, \u2206 (0) = 0.99",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "1st Hop",
"sec_num": null
},
{
"text": "2nd Hop @Koyczan @elonmusk hydroxychloroquine the antimalarial? what does that have to do with taking the red pill? you realize its not a literal pill and is in fact a metaphor for seeing things from a broader perspective.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "1st Hop",
"sec_num": null
},
{
"text": "\u2206 (i\u22121) = 0.6, \u2206 (0) = 0.46",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "1st Hop",
"sec_num": null
},
{
"text": "Jack about to change his blue check-mark policy? We don't need a #vaccine. We need to build up our immune systems with vitamins & minerals & take hydroxychloroquine if required.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "2nd Hop",
"sec_num": null
},
{
"text": "\u2206 (i\u22121) = 0.81, \u2206 (0) = 0.74 2nd Hop @VincentCrypt46 *cough* https://t.co/cQzxif9pqL \u2206 (i\u22121) = 0.57, \u2206 (0) = 0.89",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "2nd Hop",
"sec_num": null
},
{
"text": "\u2206 (i\u22121) = 0.7 \u2206 (0) = 0.7",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "2nd Hop",
"sec_num": null
},
{
"text": "1st Hop",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "2nd Hop",
"sec_num": null
},
{
"text": "It appears this dimwit has not gotten the memo.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "2nd Hop",
"sec_num": null
},
{
"text": "\u2206 (i\u22121) = 0.94, \u2206 (0) = 0.9",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "2nd Hop",
"sec_num": null
},
{
"text": "2nd Hop @WillCumberland1 @KatiePavlich @hollandcourtney The reason the right loves #Hydroxychloroquine so much is because it's what morons think a big sciencey-word sounds like",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "2nd Hop",
"sec_num": null
},
{
"text": "\u2206 (i\u22121) = 0.81, \u2206 (0) = 0.92",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "2nd Hop",
"sec_num": null
},
{
"text": "2nd Hop @KalaikiMele @WillCumberland1 @KatiePavlich @hollandcourtney No. It's because of given towards the beginning of the virus Hydroxychloroquine is very effective. It's about 70 year's old and cheap.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "2nd Hop",
"sec_num": null
},
{
"text": "Big pharma doesn't want that . Follow the",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "2nd Hop",
"sec_num": null
},
{
"text": "\u2206 (i\u22121) = 0.78, \u2206 (0) = 0.67 3rd Hop @thegordonkerr @USAmbUK @SteveBakerHW @BorisJohnson",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "2nd Hop",
"sec_num": null
},
{
"text": "What a moronic statement. I can keep myself alive and I don't need you or any State to do it for me. Thanks for your concern and with the greatest of respect, mind your own bloody business https://t.co/EkY5PcOt09",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "2nd Hop",
"sec_num": null
},
{
"text": "\u2206 (i\u22121) = 0.75, \u2206 (0) = 0.82",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "2nd Hop",
"sec_num": null
},
{
"text": "2nd Hop To identify information distortion types in cascades, we manually performed semantic analysis of tweet content. We examined key term distribution in cascades, explored their context in tweets and verified logical relations among medical terminology (see Table 1 ). The context analysis helped to recognise term substitutions and the substitution analysis to detect information distortion w.r.t. the initial tweet.",
"cite_spans": [],
"ref_spans": [
{
"start": 262,
"end": 269,
"text": "Table 1",
"ref_id": "TABREF0"
}
],
"eq_spans": [],
"section": "2nd Hop",
"sec_num": null
},
{
"text": "Our analysis also leans on topic modelling. We used Latent Dirichlet Allocation, LDA (Hoffman et al., 2010) from the scikit-learn tool. As tweets are short, we considered only the first topic. (Abd-Alrazaq et al., 2020) distinguish four main discussion themes on Twitter during the current pandemic: origin of the virus; its sources; its impact on people, countries, and the economy; and ways of mitigating the risk of infection. This set lacks medical disease description and ways to treat diagnosis, drugs, etc) . Thus, we were also interested in references to other disease related terms (DRT) within cascades, as they can indicate distortion. To examine them, we extracted a list of hyponyms of the word disease from WordNet corpus accessed via NLTK library, to which we added terms like plague, swine.flu, bird.flu, hiv, malaria, cough, wuhanflu, sars, cardiac.disease, china.flu, covid, coronovirus, cancer, obesity, diabete. We checked the appearance of these terms in the texts. In addition, we investigated the context in which these DRTs were mentioned such as: hydroxychloroquine (HCQ), symptom, treatment, prevention, propagation, study, complication, epidemic, side effect, risk group, synonyms, plague reference, other issues. Each context is defined by a set of terms (see Table 1 ). We then looked at the co-occurrence of DRTs and context terms in a tweet in order to predict the DRT context. This allowed us to gain a better understanding of topic shift related to references of other diseases.",
"cite_spans": [
{
"start": 85,
"end": 107,
"text": "(Hoffman et al., 2010)",
"ref_id": "BIBREF8"
},
{
"start": 491,
"end": 501,
"text": "diagnosis,",
"ref_id": null
},
{
"start": 502,
"end": 508,
"text": "drugs,",
"ref_id": null
},
{
"start": 509,
"end": 513,
"text": "etc)",
"ref_id": null
}
],
"ref_spans": [
{
"start": 1288,
"end": 1295,
"text": "Table 1",
"ref_id": "TABREF0"
}
],
"eq_spans": [],
"section": "2nd Hop",
"sec_num": null
},
{
"text": "We identified the top-10 words characterising the first topic of each hop using LDA. We represented each hop as a binary vector built over the words of all hops. For visualisation, we applied Principle Component Analysis (PCA) (Tipping and Bishop, 1999) with two variables (see Fig. 3 ). Note that the first three hops are rather distant from the initial tweet, while the fourth hop is quite close to the initial tweet (its role is not clear yet). Based on our analysis, 3,939 out of 21,585 unique tweets of cascades contain DRTs. Table 1 summarises the frequency of the terms and the contexts in which they were primarily used 3 . HCQ is the most used context. It brings up DRTs such as lupus, rheumatoid arthritis, malaria, heart attack, respiratory disease, etc. Chloroquine often substituted its derivative HCQ, as in the E. Musk's cascade about the research of French microbiologist D. Raoult. The terms corona and sars are often used to refer to Covid-19. As for the treatment context, the most typical DRTs are cancer, aids, influeza. Note that a given term is often used in multiple contexts but here, we report the dominant one. Thus, HCQ was discussed in the cascades regardless of their initial tweet and the PF who initiated them.",
"cite_spans": [
{
"start": 227,
"end": 253,
"text": "(Tipping and Bishop, 1999)",
"ref_id": "BIBREF23"
}
],
"ref_spans": [
{
"start": 278,
"end": 284,
"text": "Fig. 3",
"ref_id": null
},
{
"start": 531,
"end": 538,
"text": "Table 1",
"ref_id": "TABREF0"
}
],
"eq_spans": [],
"section": "Results",
"sec_num": "3"
},
{
"text": "Information cascades are rarely evoked by healthcare professionals (HS) (identified by their profile information) since they are less active on Twitter than politicians. HS quotes are often misinterpreted and their research results are misrepresented. Though most of the cascades in which HS took part were initiated by journalists, HS tweets were able to terminate an information cascade 4 by providing relevant information and ending discussion. Cascade terminators often come from the professional community (Ziegelmeyer et al., 2010) . In Fig. 2b , distances between initial tweets and the last hops of cascades show essential semantic differences revealing topic shifts. Hops in 'heads' of deep cascades are closer to their initial tweets than those in 'tails'. As distances between neighbouring hops show more similarity to each other than to their initial tweet ( Fig. 2a ), Figure 3 : PCA on the first LDA topic hops accumulate information mutability. The last hop is able to exhaust the cascade new topic. Medical information is distorted via erroneous logical conclusions and mental operations of oversimplification, overgeneralisation, exaggeration, substitution, omission of facts, insertion of erroneous conclusions, misuse of medical concepts and distortion of their connections. The instances of the distortions occur in comments on the initial tweet and hops of cascades generated by the PF tweets. In fragments of cascades generated by comments on PF tweets in Fig. 1 , distortion and misinformation appear due to oversimplification and distortion of logical links. Omission of facts is connected to oversimplification: HCQ efficacy in the Covid-19 treatment depends on patient anamnesis. Misinformation appears when a user did not provide a link to results of a French study he referred to while reacting on a red pill. The red pill meme reveals an unpleasant truth and is derived from a scene in the film The Matrix; an insertion of an erroneous conclusion occurred in comments where red pill is associated with HCQ. Ordinary users exaggerate consequences of government decisions. They politicise and criminalise these actions shifting the topic to political and business disputes (RT @TribeforFreedom: Cuomo is dedicated to a vaccine (Bill Gates) So he does not allow the use of hydroxychloroquine). Overgeneralisation often appears in references to a personal experience when a single fact was considered as a trend 5 .",
"cite_spans": [
{
"start": 511,
"end": 537,
"text": "(Ziegelmeyer et al., 2010)",
"ref_id": "BIBREF24"
}
],
"ref_spans": [
{
"start": 543,
"end": 550,
"text": "Fig. 2b",
"ref_id": null
},
{
"start": 871,
"end": 878,
"text": "Fig. 2a",
"ref_id": null
},
{
"start": 882,
"end": 890,
"text": "Figure 3",
"ref_id": null
},
{
"start": 1478,
"end": 1484,
"text": "Fig. 1",
"ref_id": null
}
],
"eq_spans": [],
"section": "Results",
"sec_num": "3"
},
{
"text": "A topic shift is like the broken telephone effect (Boyd et al., 2010) when the message is altered during transmission, a typical cascade feature (Ribeiro et al., 2019) . Thus, we showed that through this effect, PFs influence misinformation distribution on Twitter regardless of the quality of the information in their initial tweet. Users consider HSs as sources of 'raw information', which needs PF evaluation and approval. An interesting finding is that medical experts were able to stop the development of cascades by providing their factual and knowledgeable opinion. Intellectuals have the most influence on ordinary users' evaluation of the drugs efficacy research that is similar to the results of the cascades study in (Cha et al., 2010) . We see the effect in the cascade evoked by comments on Musk's tweet. In the contexts of DRTs, we discovered the instances of medical information distortion. In contrast to previous works mainly focused on the initial spreading of fake news (Ahmed et al., 2020; Brennen et al., 2020) , here we clarified the mechanism of the medical information distortion during the Covid-19 pandemic by analysing topic shifts within cascades. Usually, the medical topic is shifted to political and business disputes. We showed that cascade hops accumulate mutability of information. We found that after a noticeable topic shift occurring in the first 3 hops, there is a return to the original topic. Through context analysis, we improved the list of topics of (Abd-Alrazaq et al., 2020) adding those that are sensitive to medical information distortion. Our analysis provides valuable insights for the automatic detection and classification of medical information distortion.",
"cite_spans": [
{
"start": 50,
"end": 69,
"text": "(Boyd et al., 2010)",
"ref_id": "BIBREF2"
},
{
"start": 145,
"end": 167,
"text": "(Ribeiro et al., 2019)",
"ref_id": "BIBREF17"
},
{
"start": 728,
"end": 746,
"text": "(Cha et al., 2010)",
"ref_id": "BIBREF5"
},
{
"start": 989,
"end": 1009,
"text": "(Ahmed et al., 2020;",
"ref_id": "BIBREF1"
},
{
"start": 1010,
"end": 1031,
"text": "Brennen et al., 2020)",
"ref_id": "BIBREF3"
}
],
"ref_spans": [],
"eq_spans": [],
"section": "Conclusions",
"sec_num": "4"
},
{
"text": "The query was updated throughout the collection period based on new information about Covid-19 and its possible treatment. 2 Some tweets attained 422K retweets, e.g. https://bit.ly/32TPeSt or https://bit.ly/3gYDcfE",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "",
"sec_num": null
},
{
"text": "We intentionally excluded the term 'covid' from the plot, as it is the main topic of the cascades (mentioned in 2,200 texts).",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "",
"sec_num": null
},
{
"text": "Example: @eugenegu Hydroxychloroquine has known side effects including prolonging the heart QT interval (time between the Q wave and the T wave on an EKG), which is the time it takes for the ventricles to contract and relax. QT prolongation can cause Torsades de Pointes, a deadly heart rhythm 5 Example: HYDROXYCHLOROQUINE cured my cousin and his wife, after 10 days of insurmountable suffering, in a matter of 24 hours...and he had existing heart issues. Did great",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "",
"sec_num": null
}
],
"back_matter": [],
"bib_entries": {
"BIBREF0": {
"ref_id": "b0",
"title": "Top Concerns of Tweeters During the COVID-19 Pandemic: Infoveillance Study",
"authors": [
{
"first": "A",
"middle": [],
"last": "Abd-Alrazaq",
"suffix": ""
},
{
"first": "D",
"middle": [],
"last": "Alhuwail",
"suffix": ""
},
{
"first": "M",
"middle": [],
"last": "Househ",
"suffix": ""
},
{
"first": "M",
"middle": [],
"last": "Hamdi",
"suffix": ""
},
{
"first": "Z",
"middle": [],
"last": "Shah",
"suffix": ""
}
],
"year": 2020,
"venue": "J Med Internet Res",
"volume": "22",
"issue": "4",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "A. Abd-Alrazaq, D. Alhuwail, M. Househ, M. Hamdi, and Z. Shah. 2020. Top Concerns of Tweeters During the COVID-19 Pandemic: Infoveillance Study. J Med Internet Res, 22(4):e19016, April.",
"links": null
},
"BIBREF1": {
"ref_id": "b1",
"title": "COVID-19 and the 5G Conspiracy Theory: Social Network Analysis of Twitter Data",
"authors": [
{
"first": "W",
"middle": [],
"last": "Ahmed",
"suffix": ""
},
{
"first": "J",
"middle": [],
"last": "Vidal-Alaball",
"suffix": ""
},
{
"first": "J",
"middle": [],
"last": "Downing",
"suffix": ""
},
{
"first": "F",
"middle": [
"L"
],
"last": "Segu\u00ed",
"suffix": ""
}
],
"year": 2020,
"venue": "Journal of Medical Internet Research",
"volume": "22",
"issue": "5",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "W. Ahmed, J. Vidal-Alaball, J. Downing, and F.L. Segu\u00ed. 2020. COVID-19 and the 5G Conspiracy Theory: Social Network Analysis of Twitter Data. Journal of Medical Internet Research, 22(5):e19458.",
"links": null
},
"BIBREF2": {
"ref_id": "b2",
"title": "Tweet, Tweet, Retweet: Conversational Aspects of Retweeting on Twitter",
"authors": [
{
"first": "D",
"middle": [],
"last": "Boyd",
"suffix": ""
},
{
"first": "S",
"middle": [],
"last": "Golder",
"suffix": ""
},
{
"first": "G",
"middle": [],
"last": "Lotan",
"suffix": ""
}
],
"year": 2010,
"venue": "2010 43rd Hawaii International Conference on System Sciences",
"volume": "",
"issue": "",
"pages": "1530--1605",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "D. Boyd, S. Golder, and G. Lotan. 2010. Tweet, Tweet, Retweet: Conversational Aspects of Retweeting on Twitter. In 2010 43rd Hawaii International Conference on System Sciences, pages 1-10, January. ISSN: 1530-1605.",
"links": null
},
"BIBREF3": {
"ref_id": "b3",
"title": "Types, Sources, and Claims of COVID-19 Misinformation",
"authors": [
{
"first": "J",
"middle": [
"S"
],
"last": "Brennen",
"suffix": ""
},
{
"first": "F",
"middle": [
"M"
],
"last": "Simon",
"suffix": ""
},
{
"first": "P",
"middle": [
"N"
],
"last": "Howard",
"suffix": ""
},
{
"first": "R",
"middle": [
"K"
],
"last": "Nielsen",
"suffix": ""
}
],
"year": 2020,
"venue": "",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "J.S. Brennen, F.M. Simon, P.N. Howard, and R.K. Nielsen. 2020. Types, Sources, and Claims of COVID-19 Misinformation. page 13.",
"links": null
},
"BIBREF4": {
"ref_id": "b4",
"title": "Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing: System Demonstrations",
"authors": [
{
"first": "Daniel",
"middle": [],
"last": "Cer",
"suffix": ""
},
{
"first": "Yinfei",
"middle": [],
"last": "Yang",
"suffix": ""
},
{
"first": "Sheng-Yi",
"middle": [],
"last": "Kong",
"suffix": ""
},
{
"first": "Nan",
"middle": [],
"last": "Hua",
"suffix": ""
},
{
"first": "Nicole",
"middle": [],
"last": "Limtiaco",
"suffix": ""
},
{
"first": "Rhomni",
"middle": [],
"last": "St",
"suffix": ""
},
{
"first": "Noah",
"middle": [],
"last": "John",
"suffix": ""
},
{
"first": "Mario",
"middle": [],
"last": "Constant",
"suffix": ""
},
{
"first": "Steve",
"middle": [],
"last": "Guajardo-Cespedes",
"suffix": ""
},
{
"first": "Chris",
"middle": [],
"last": "Yuan",
"suffix": ""
},
{
"first": "Brian",
"middle": [],
"last": "Tar",
"suffix": ""
},
{
"first": "Ray",
"middle": [],
"last": "Strope",
"suffix": ""
},
{
"first": "",
"middle": [],
"last": "Kurzweil",
"suffix": ""
}
],
"year": 2018,
"venue": "",
"volume": "",
"issue": "",
"pages": "169--174",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Daniel Cer, Yinfei Yang, Sheng-yi Kong, Nan Hua, Nicole Limtiaco, Rhomni St. John, Noah Constant, Mario Guajardo-Cespedes, Steve Yuan, Chris Tar, Brian Strope, and Ray Kurzweil. 2018. Universal Sentence En- coder for English. In Proceedings of the 2018 Conference on Empirical Methods in Natural Language Process- ing: System Demonstrations, pages 169-174, Brussels, Belgium, November. Association for Computational Linguistics.",
"links": null
},
"BIBREF5": {
"ref_id": "b5",
"title": "Measuring user influence in twitter: The million follower fallacy",
"authors": [
{
"first": "Meeyoung",
"middle": [],
"last": "Cha",
"suffix": ""
},
{
"first": "Hamed",
"middle": [],
"last": "Haddadi",
"suffix": ""
},
{
"first": "Fabr\u00edcio",
"middle": [],
"last": "Benevenuto",
"suffix": ""
},
{
"first": "P",
"middle": [
"Krishna"
],
"last": "Gummadi",
"suffix": ""
}
],
"year": 2010,
"venue": "",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Meeyoung Cha, Hamed Haddadi, Fabr\u00edcio Benevenuto, and P. Krishna Gummadi. 2010. Measuring user influence in twitter: The million follower fallacy.",
"links": null
},
"BIBREF6": {
"ref_id": "b6",
"title": "):e18444. Company: JMIR Public Health and Surveillance Distributor: JMIR Public Health and Surveillance Institution: JMIR Public Health and Surveillance Label",
"authors": [
{
"first": "Jose",
"middle": [],
"last": "Yunam Cuan-Baltazar",
"suffix": ""
},
{
"first": "Maria",
"middle": [
"Jos\u00e9"
],
"last": "Mu\u00f1oz-Perez",
"suffix": ""
},
{
"first": "Carolina",
"middle": [],
"last": "Robledo-Vega",
"suffix": ""
},
{
"first": "Maria",
"middle": [
"Fernanda"
],
"last": "P\u00e9rez-Zepeda",
"suffix": ""
},
{
"first": "Elena",
"middle": [],
"last": "Soto-Vega",
"suffix": ""
}
],
"year": 2020,
"venue": "JMIR Public Health and Surveillance",
"volume": "6",
"issue": "2",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Jose Yunam Cuan-Baltazar, Maria Jos\u00e9 Mu\u00f1oz-Perez, Carolina Robledo-Vega, Maria Fernanda P\u00e9rez-Zepeda, and Elena Soto-Vega. 2020. Misinformation of COVID-19 on the Internet: Infodemiology Study. JMIR Public Health and Surveillance, 6(2):e18444. Company: JMIR Public Health and Surveillance Distributor: JMIR Public Health and Surveillance Institution: JMIR Public Health and Surveillance Label: JMIR Public Health and Surveillance Publisher: JMIR Publications Inc., Toronto, Canada.",
"links": null
},
"BIBREF7": {
"ref_id": "b7",
"title": "When fear and misinformation go viral: Pharmacists' role in deterring medication misinformation during the 'infodemic' surrounding COVID-19",
"authors": [
{
"first": "Daniel",
"middle": [
"A"
],
"last": "Erku",
"suffix": ""
},
{
"first": "A",
"middle": [],
"last": "Sewunet",
"suffix": ""
},
{
"first": "Solomon",
"middle": [],
"last": "Belachew",
"suffix": ""
},
{
"first": "Mahipal",
"middle": [],
"last": "Abrha",
"suffix": ""
},
{
"first": "Jackson",
"middle": [],
"last": "Sinnollareddy",
"suffix": ""
},
{
"first": "Kathryn",
"middle": [
"J"
],
"last": "Thomas",
"suffix": ""
},
{
"first": "Wubshet",
"middle": [
"H"
],
"last": "Steadman",
"suffix": ""
},
{
"first": "",
"middle": [],
"last": "Tesfaye",
"suffix": ""
}
],
"year": 2020,
"venue": "",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Daniel A. Erku, Sewunet A. Belachew, Solomon Abrha, Mahipal Sinnollareddy, Jackson Thomas, Kathryn J. Steadman, and Wubshet H. Tesfaye. 2020. When fear and misinformation go viral: Pharmacists' role in deterring medication misinformation during the 'infodemic' surrounding COVID-19. Research in Social and Administrative Pharmacy.",
"links": null
},
"BIBREF8": {
"ref_id": "b8",
"title": "Online learning for latent dirichlet allocation",
"authors": [
{
"first": "Matthew",
"middle": [
"D"
],
"last": "Hoffman",
"suffix": ""
},
{
"first": "David",
"middle": [
"M"
],
"last": "Blei",
"suffix": ""
},
{
"first": "Francis",
"middle": [
"R"
],
"last": "Bach",
"suffix": ""
}
],
"year": 2010,
"venue": "Advances in Neural Information Processing Systems 23: 24th Annual Conference on Neural Information Processing Systems 2010. Proceedings of a meeting held 6-9",
"volume": "",
"issue": "",
"pages": "856--864",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Matthew D. Hoffman, David M. Blei, and Francis R. Bach. 2010. Online learning for latent dirichlet allocation. In John D. Lafferty, Christopher K. I. Williams, John Shawe-Taylor, Richard S. Zemel, and Aron Culotta, editors, Advances in Neural Information Processing Systems 23: 24th Annual Conference on Neural Information Processing Systems 2010. Proceedings of a meeting held 6-9 December 2010, Vancouver, British Columbia, Canada, pages 856-864. Curran Associates, Inc.",
"links": null
},
"BIBREF9": {
"ref_id": "b9",
"title": "Coronavirus Goes Viral: Quantifying the COVID-19",
"authors": [
{
"first": "Ramez",
"middle": [],
"last": "Kouzy",
"suffix": ""
},
{
"first": "Joseph",
"middle": [],
"last": "Abi Jaoude",
"suffix": ""
},
{
"first": "Afif",
"middle": [],
"last": "Kraitem",
"suffix": ""
},
{
"first": "Molly",
"middle": [
"B El"
],
"last": "Alam",
"suffix": ""
},
{
"first": "Basil",
"middle": [],
"last": "Karam",
"suffix": ""
},
{
"first": "Elio",
"middle": [],
"last": "Adib",
"suffix": ""
},
{
"first": "Jabra",
"middle": [],
"last": "Zarka",
"suffix": ""
},
{
"first": "Cindy",
"middle": [],
"last": "Traboulsi",
"suffix": ""
},
{
"first": "Elie",
"middle": [
"W"
],
"last": "Akl",
"suffix": ""
},
{
"first": "Khalil",
"middle": [],
"last": "Baddour",
"suffix": ""
}
],
"year": 2020,
"venue": "",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Ramez Kouzy, Joseph Abi Jaoude, Afif Kraitem, Molly B. El Alam, Basil Karam, Elio Adib, Jabra Zarka, Cindy Traboulsi, Elie W. Akl, and Khalil Baddour. 2020. Coronavirus Goes Viral: Quantifying the COVID-19",
"links": null
},
"BIBREF11": {
"ref_id": "b11",
"title": "Fact-checking as risk communication: the multi-layered risk of misinformation in times of COVID-19",
"authors": [
{
"first": "Nicole",
"middle": [
"M"
],
"last": "Krause",
"suffix": ""
},
{
"first": "Isabelle",
"middle": [],
"last": "Freiling",
"suffix": ""
},
{
"first": "Becca",
"middle": [],
"last": "Beets",
"suffix": ""
},
{
"first": "Dominique",
"middle": [],
"last": "Brossard",
"suffix": ""
}
],
"year": 2020,
"venue": "Journal of Risk Research",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Nicole M. Krause, Isabelle Freiling, Becca Beets, and Dominique Brossard. 2020. Fact-checking as risk com- munication: the multi-layered risk of misinformation in times of COVID-19. Journal of Risk Research, April. Publisher: Routledge.",
"links": null
},
"BIBREF12": {
"ref_id": "b12",
"title": "Alexis Perrier, and Bilel Benbouzid",
"authors": [
{
"first": "Marianne",
"middle": [],
"last": "Noel",
"suffix": ""
},
{
"first": "Liana",
"middle": [],
"last": "Ermakova",
"suffix": ""
},
{
"first": "Pedro",
"middle": [],
"last": "Rammaciotti",
"suffix": ""
}
],
"year": 2020,
"venue": "Controverse scientifique",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Marianne Noel, Liana Ermakova, Pedro Rammaciotti, Alexis Perrier, and Bilel Benbouzid. 2020. Controverse scientifique.",
"links": null
},
"BIBREF13": {
"ref_id": "b13",
"title": "Understanding the Personality of Contributors to Information Cascades in Social Media in response to COVID-19 Pandemic",
"authors": [
{
"first": "Diana",
"middle": [],
"last": "Nurbakova",
"suffix": ""
},
{
"first": "Liana",
"middle": [],
"last": "Ermakova",
"suffix": ""
},
{
"first": "Irina",
"middle": [],
"last": "Ovchinnikova",
"suffix": ""
}
],
"year": 2020,
"venue": "2020 International Conference on Data Mining Workshops, ICDM Workshops 2020",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Diana Nurbakova, Liana Ermakova, and Irina Ovchinnikova. 2020. Understanding the Personality of Contributors to Information Cascades in Social Media in response to COVID-19 Pandemic. In 2020 International Conference on Data Mining Workshops, ICDM Workshops 2020, Sorrento, Italy, November 17-20, 2020, page 8. IEEE.",
"links": null
},
"BIBREF14": {
"ref_id": "b14",
"title": "A Corpus with Multi-Level Annotations of Patients, Interventions and Outcomes to Support Language Processing for Medical Literature",
"authors": [
{
"first": "B",
"middle": [],
"last": "Nye",
"suffix": ""
},
{
"first": "J",
"middle": [
"J"
],
"last": "Li",
"suffix": ""
},
{
"first": "R",
"middle": [],
"last": "Patel",
"suffix": ""
},
{
"first": "Y",
"middle": [],
"last": "Yang",
"suffix": ""
},
{
"first": "I",
"middle": [],
"last": "Marshall",
"suffix": ""
},
{
"first": "A",
"middle": [],
"last": "Nenkova",
"suffix": ""
},
{
"first": "B",
"middle": [],
"last": "Wallace",
"suffix": ""
}
],
"year": 2018,
"venue": "Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics",
"volume": "1",
"issue": "",
"pages": "197--207",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "B. Nye, J.J. Li, R. Patel, Y. Yang, I. Marshall, A. Nenkova, and B. Wallace. 2018. A Corpus with Multi-Level Annotations of Patients, Interventions and Outcomes to Support Language Processing for Medical Literature. In Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pages 197-207, Melbourne, Australia, July. Association for Computational Linguistics.",
"links": null
},
"BIBREF15": {
"ref_id": "b15",
"title": "Lazy, Not Biased: Susceptibility to Partisan Fake News Is Better Explained by Lack of Reasoning Than by Motivated Reasoning",
"authors": [
{
"first": "G",
"middle": [],
"last": "Pennycook",
"suffix": ""
},
{
"first": "D",
"middle": [
"G"
],
"last": "Rand",
"suffix": ""
}
],
"year": 2018,
"venue": "",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "G. Pennycook and D.G. Rand. 2018. Lazy, Not Biased: Susceptibility to Partisan Fake News Is Better Explained by Lack of Reasoning Than by Motivated Reasoning.",
"links": null
},
"BIBREF16": {
"ref_id": "b16",
"title": "Fighting COVID-19 Misinformation on Social Media: Experimental Evidence for a Scalable Accuracy-Nudge Intervention",
"authors": [
{
"first": "G",
"middle": [],
"last": "Pennycook",
"suffix": ""
},
{
"first": "J",
"middle": [],
"last": "Mcphetres",
"suffix": ""
},
{
"first": "Y",
"middle": [],
"last": "Zhang",
"suffix": ""
},
{
"first": "J",
"middle": [
"G"
],
"last": "Lu",
"suffix": ""
},
{
"first": "D",
"middle": [
"G"
],
"last": "Rand",
"suffix": ""
}
],
"year": 2020,
"venue": "Psychological Science",
"volume": "31",
"issue": "7",
"pages": "770--780",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "G. Pennycook, J. McPhetres, Y. Zhang, J.G. Lu, and D.G. Rand. 2020. Fighting COVID-19 Misinformation on Social Media: Experimental Evidence for a Scalable Accuracy-Nudge Intervention. Psychological Science, 31(7):770-780, July. Publisher: SAGE Publications Inc.",
"links": null
},
"BIBREF17": {
"ref_id": "b17",
"title": "Message distortion in information cascades",
"authors": [
{
"first": "Kristina",
"middle": [],
"last": "Horta Manoel Ribeiro",
"suffix": ""
},
{
"first": "Robert",
"middle": [],
"last": "Gligoric",
"suffix": ""
},
{
"first": "",
"middle": [],
"last": "West",
"suffix": ""
}
],
"year": 2019,
"venue": "",
"volume": "",
"issue": "",
"pages": "681--692",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Horta Manoel Ribeiro, Kristina Gligoric, and Robert West. 2019. Message distortion in information cascades. page 681-692.",
"links": null
},
"BIBREF18": {
"ref_id": "b18",
"title": "Influence and Passivity in Social Media",
"authors": [
{
"first": "D",
"middle": [
"M"
],
"last": "Romero",
"suffix": ""
},
{
"first": "W",
"middle": [],
"last": "Galuba",
"suffix": ""
},
{
"first": "S",
"middle": [],
"last": "Asur",
"suffix": ""
},
{
"first": "B",
"middle": [
"A"
],
"last": "Huberman",
"suffix": ""
}
],
"year": 2011,
"venue": "Dimitrios Gunopulos, Thomas Hofmann, Donato Malerba, and Michalis Vazirgiannis",
"volume": "",
"issue": "",
"pages": "18--33",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "D.M. Romero, W. Galuba, S. Asur, and B.A. Huberman. 2011. Influence and Passivity in Social Media. In Dim- itrios Gunopulos, Thomas Hofmann, Donato Malerba, and Michalis Vazirgiannis, editors, Machine Learning and Knowledge Discovery in Databases, pages 18-33, Berlin, Heidelberg. Springer Berlin Heidelberg.",
"links": null
},
"BIBREF19": {
"ref_id": "b19",
"title": "The diffusion of misinformation on social media: Temporal pattern, message, and source",
"authors": [
{
"first": "J",
"middle": [],
"last": "Shin",
"suffix": ""
},
{
"first": "L",
"middle": [],
"last": "Jian",
"suffix": ""
},
{
"first": "K",
"middle": [],
"last": "Driscoll",
"suffix": ""
},
{
"first": "F",
"middle": [],
"last": "Bar",
"suffix": ""
}
],
"year": 2018,
"venue": "Computers in Human Behavior",
"volume": "83",
"issue": "",
"pages": "278--287",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "J. Shin, L. Jian, K. Driscoll, and F. Bar. 2018. The diffusion of misinformation on social media: Temporal pattern, message, and source. Computers in Human Behavior, 83:278-287, June.",
"links": null
},
"BIBREF20": {
"ref_id": "b20",
"title": "Modern information retrieval: A brief overview",
"authors": [
{
"first": "Amit",
"middle": [],
"last": "Singhal",
"suffix": ""
}
],
"year": 2001,
"venue": "IEEE Data Eng. Bull",
"volume": "24",
"issue": "",
"pages": "35--43",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Amit Singhal. 2001. Modern information retrieval: A brief overview. IEEE Data Eng. Bull., 24:35-43.",
"links": null
},
"BIBREF21": {
"ref_id": "b21",
"title": "COVID-19: Emerging compassion, courage and resilience in the face of misinformation and adversity",
"authors": [
{
"first": "Graeme",
"middle": [
"D"
],
"last": "Smith",
"suffix": ""
},
{
"first": "Fowie",
"middle": [],
"last": "Ng",
"suffix": ""
},
{
"first": "William Ho Cheung",
"middle": [],
"last": "Li",
"suffix": ""
}
],
"year": 2020,
"venue": "Journal of Clinical Nursing",
"volume": "29",
"issue": "9",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Graeme D. Smith, Fowie Ng, and William Ho Cheung Li. 2020. COVID-19: Emerging compassion, courage and resilience in the face of misinformation and adversity. Journal of Clinical Nursing, 29(9-10):1425, May. Publisher: Wiley-Blackwell.",
"links": null
},
"BIBREF22": {
"ref_id": "b22",
"title": "Impact of Rumors and Misinformation on COVID-19 in Social Media",
"authors": [
{
"first": "Samia",
"middle": [],
"last": "Tasnim",
"suffix": ""
},
{
"first": "Hoimonty",
"middle": [],
"last": "Md Mahbub Hossain",
"suffix": ""
},
{
"first": "",
"middle": [],
"last": "Mazumder",
"suffix": ""
}
],
"year": 2020,
"venue": "Journal of Preventive Medicine and Public Health",
"volume": "53",
"issue": "3",
"pages": "171--174",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Samia Tasnim, Md Mahbub Hossain, and Hoimonty Mazumder. 2020. Impact of Rumors and Misinformation on COVID-19 in Social Media. Journal of Preventive Medicine and Public Health, 53(3):171-174. Publisher: The Korean Society for Preventive Medicine.",
"links": null
},
"BIBREF23": {
"ref_id": "b23",
"title": "Probabilistic principal component analysis",
"authors": [
{
"first": "Michael",
"middle": [
"E"
],
"last": "Tipping",
"suffix": ""
},
{
"first": "Christopher",
"middle": [
"M"
],
"last": "Bishop",
"suffix": ""
}
],
"year": 1999,
"venue": "Journal of the Royal Statistical Society: Series B (Statistical Methodology)",
"volume": "61",
"issue": "3",
"pages": "611--622",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Michael E. Tipping and Christopher M. Bishop. 1999. Probabilistic principal component analysis. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 61(3):611-622.",
"links": null
},
"BIBREF24": {
"ref_id": "b24",
"title": "Fragility of information cascades: an experimental study using elicited beliefs",
"authors": [
{
"first": "A",
"middle": [],
"last": "Ziegelmeyer",
"suffix": ""
},
{
"first": "F",
"middle": [],
"last": "Koessler",
"suffix": ""
},
{
"first": "J",
"middle": [],
"last": "Bracht",
"suffix": ""
},
{
"first": "E",
"middle": [],
"last": "Winter",
"suffix": ""
}
],
"year": 2010,
"venue": "Experimental Economics",
"volume": "13",
"issue": "2",
"pages": "121--145",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "A. Ziegelmeyer, F. Koessler, J. Bracht, and E. Winter. 2010. Fragility of information cascades: an experimental study using elicited beliefs. Experimental Economics, 13(2):121-145, June.",
"links": null
}
},
"ref_entries": {
"FIGREF0": {
"type_str": "figure",
"text": "2nd Hop shift to political views distortion of logical connections oversimplification topic shift via ridiculing the opponents overestimating their ignorance misinformation, reference to low-credible source exaggeration \"The overwhelming majority of people recover from this virus.\" -Dr. Fauci Initial @KatiePavlich @hollandcourtney Thanks to Trump and his pushing of #Hydroxychloroquine \u2206 (i\u22121) = 0.91, \u2206 (0) = 0.91 1st Hop 'The majority of people who actually get this infection do not die'-Chris #Whitty, Chief Medical Officer. Not such a deadly virus then is it?",
"uris": null,
"num": null
},
"FIGREF1": {
"type_str": "figure",
"text": "Examples of cascades and information distortion within them Distances (1 \u2212 cos) between: (a) neighbouring hops, (b) hops and initial tweets",
"uris": null,
"num": null
},
"TABREF0": {
"html": null,
"num": null,
"text": "Disease related terms (DRTs) in cascades and their prevailing context Visualisation of mentions of DRTs Context and terms hcq = {hydroxychloroquine hcq hc azithromycin chloroquine zpack z.pac antimalarial zinc sulfate zithromax} symptom = {symptom congestion bood cough aches lungs fever antibody headache mucus signs asymptomatic respiratory shortness.of.breath symptom.free back.pain diarrhea nausea} .case critically critical.condition severe urgent.care.center emergency icu intensive.care.unit} epidemic = {epidemic pandemic plague zika ebola lockdown locked.down outbreak swine.flu} side effect = {side.effect heart.disease cardiac.problem hallucination psychiatric.symptom vision.loss vomiting loss.of.appetite dizziness slow.heartbeat heart.failure swelling.ankles} risk group = {elderly diabete obesity obese asthma comorbidity 60.plus 60.year} * radius is proportional to # of mentions of a term synonyms = {corona wuhan.virus wuhan.disease sars.cov.2 covid19 covid c19 coronovirus chinese.flu china.flu cv.19 sars.cov sars chinese.plague coronahoax wuhanflu}",
"content": "<table><tr><td>treatment = {treatment cure curing treat pill medicament</td></tr><tr><td>remedy therapy drug acetaminophen prescribe prescription</td></tr><tr><td>breathlessness medications diagnos recovery}</td></tr><tr><td>prevention = {vaccin mask hand.wash distanc prevention de-</td></tr><tr><td>tection test cover.*mouth self.isol prophylaxis immunity stay-</td></tr><tr><td>home staying.home stay.home prophylactic serum.test preven-</td></tr><tr><td>tative}</td></tr><tr><td>study = {study control.group randomi.ed research treat-</td></tr><tr><td>ment.group trial expert scientific.evidence success.rate sci-</td></tr><tr><td>ence protocol effective.rate placebo}</td></tr><tr><td>complication = {ventilator complication transfusion coma</td></tr><tr><td>hospitalization death severe</td></tr></table>",
"type_str": "table"
}
}
}
} |