File size: 64,249 Bytes
6fa4bc9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
{
    "paper_id": "2020",
    "header": {
        "generated_with": "S2ORC 1.0.0",
        "date_generated": "2023-01-19T15:01:04.407749Z"
    },
    "title": "Investigating an approach for low resource language dataset creation, curation and classification: Setswana and Sepedi",
    "authors": [
        {
            "first": "Vukosi",
            "middle": [],
            "last": "Marivate",
            "suffix": "",
            "affiliation": {
                "laboratory": "",
                "institution": "University of Pretoria",
                "location": {}
            },
            "email": "vukosi.marivate@cs.up.ac.za"
        },
        {
            "first": "Tshephisho",
            "middle": [],
            "last": "Sefara",
            "suffix": "",
            "affiliation": {
                "laboratory": "",
                "institution": "University of Pretoria",
                "location": {}
            },
            "email": "tsefara@csir.co.za"
        },
        {
            "first": "Vongani",
            "middle": [],
            "last": "Chabalala",
            "suffix": "",
            "affiliation": {
                "laboratory": "",
                "institution": "University of Pretoria",
                "location": {}
            },
            "email": ""
        },
        {
            "first": "Keamogetswe",
            "middle": [],
            "last": "Makhaya",
            "suffix": "",
            "affiliation": {
                "laboratory": "",
                "institution": "University of Pretoria",
                "location": {}
            },
            "email": ""
        },
        {
            "first": "Tumisho",
            "middle": [],
            "last": "Mokgonyane",
            "suffix": "",
            "affiliation": {
                "laboratory": "",
                "institution": "University of Pretoria",
                "location": {}
            },
            "email": ""
        },
        {
            "first": "Rethabile",
            "middle": [],
            "last": "Mokoena",
            "suffix": "",
            "affiliation": {
                "laboratory": "",
                "institution": "University of Pretoria",
                "location": {}
            },
            "email": ""
        },
        {
            "first": "Abiodun",
            "middle": [],
            "last": "Modupe",
            "suffix": "",
            "affiliation": {
                "laboratory": "",
                "institution": "University of Pretoria",
                "location": {}
            },
            "email": ""
        }
    ],
    "year": "",
    "venue": null,
    "identifiers": {},
    "abstract": "The recent advances in Natural Language Processing have only been a boon for well represented languages, negating research in lesser known global languages. This is in part due to the availability of curated data and research resources. One of the current challenges concerning low-resourced languages are clear guidelines on the collection, curation and preparation of datasets for different use-cases. In this work, we take on the task of creating two datasets that are focused on news headlines (i.e short text) for Setswana and Sepedi and the creation of a news topic classification task from these datasets. In this study, we document our work, propose baselines for classification, and investigate an approach on data augmentation better suited to low-resourced languages in order to improve the performance of the classifiers.",
    "pdf_parse": {
        "paper_id": "2020",
        "_pdf_hash": "",
        "abstract": [
            {
                "text": "The recent advances in Natural Language Processing have only been a boon for well represented languages, negating research in lesser known global languages. This is in part due to the availability of curated data and research resources. One of the current challenges concerning low-resourced languages are clear guidelines on the collection, curation and preparation of datasets for different use-cases. In this work, we take on the task of creating two datasets that are focused on news headlines (i.e short text) for Setswana and Sepedi and the creation of a news topic classification task from these datasets. In this study, we document our work, propose baselines for classification, and investigate an approach on data augmentation better suited to low-resourced languages in order to improve the performance of the classifiers.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Abstract",
                "sec_num": null
            }
        ],
        "body_text": [
            {
                "text": "The most pressing issues with regard to low-resource languages are the lack of sufficient language resources, like features related to automation. In this study, we introduce an investigation of a low-resource language that provides automatic formulation and customisation of new capabilities from existing ones. While there are more than six thousand languages spoken globally, the availability of resources among each of those are extraordinarily unbalanced (Nettle, 1998) . For example, if we focus on language resources annotated on the public domain, as of November 2019, AG corpus released about 496, 835 news articles related to the English language from more than 200 sources 1 . Additionally, the Reuters News Dataset (Lewis, 1997) comprise roughly 10, 788 annotated texts from the Reuters financial newswire. Moreover, the New York Times Annotated Corpusholds over 1.8 million articles (Sandhaus, 2008) . Lastly, Google Translate only supports around 100 languages (Johnson et al., 2017) . significant amount of knowledge exists for only a small number of languages, neglecting 17% out of the world's language categories labelled as low-resource, and there are currently no standard annotated tokens in low-resource languages (Strassel and Tracey, 2016) . This in turn, makes it challenging to develop various mechanisms and tools used for Natural Language Processing (NLP). In South Africa, most of the news websites (private and public) are published in English, despite there being 11 official languages (including English). In this paper, we list the premium newspapers by circulation as per the first Quarter of 2019 (Bureau of Circulations, 2019) ( Table 1) . Currently, there is a lack of information surrounding 8 of the 11 official South African languages, with the exception of English, Afrikaans and isiZulu which contain most of the reported datasets. n this work, we aim to provide a general framework for two of the 11 South African languages, to create an annotated linguistic resource for Setswana and Se-1 http://groups.di.unipi.it/\u02dcgulli pedi news headlines. In this study, we applied data sources of the news headlines from the South African Broadcast Corporation (SABC) 2 , their social media streams and a few acoustic news. Unfortunately, at the time of this study, we did not have any direct access to news reports, and hopefully this study can promote collaboration between the national broadcaster and NLP researchers. The rest of the work is organized as follows. Section 2. discusses prior work that has gone into building local corpora in South Africa and how they have been used. Section 3. presents the proposed approach to build a local news corpora and annotating the corpora with categories. From here, we focus on ways to gather data for vectorization and building word embeddings (needing an expanded corpus). We also release and make pre-trained word embeddings for 2 local languages as part of this work (Marivate and Sefara, 2020a) . Section 4. investigate building classification models for the Setswana and Sepedi news and improve those classifiers using a 2 step augmentation approach inspired by work on hierarchical language models (Yu et al., 2019) . Finally, Section 5. concludes and proposes a path forward for this work.",
                "cite_spans": [
                    {
                        "start": 460,
                        "end": 474,
                        "text": "(Nettle, 1998)",
                        "ref_id": "BIBREF10"
                    },
                    {
                        "start": 727,
                        "end": 740,
                        "text": "(Lewis, 1997)",
                        "ref_id": "BIBREF5"
                    },
                    {
                        "start": 896,
                        "end": 912,
                        "text": "(Sandhaus, 2008)",
                        "ref_id": "BIBREF12"
                    },
                    {
                        "start": 975,
                        "end": 997,
                        "text": "(Johnson et al., 2017)",
                        "ref_id": "BIBREF3"
                    },
                    {
                        "start": 1236,
                        "end": 1263,
                        "text": "(Strassel and Tracey, 2016)",
                        "ref_id": "BIBREF14"
                    },
                    {
                        "start": 2951,
                        "end": 2979,
                        "text": "(Marivate and Sefara, 2020a)",
                        "ref_id": "BIBREF7"
                    },
                    {
                        "start": 3185,
                        "end": 3202,
                        "text": "(Yu et al., 2019)",
                        "ref_id": "BIBREF17"
                    }
                ],
                "ref_spans": [
                    {
                        "start": 1665,
                        "end": 1673,
                        "text": "Table 1)",
                        "ref_id": "TABREF0"
                    }
                ],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1."
            },
            {
                "text": "Creating sizeable language resources for low resource languages is important in improving available data for study (Zoph et al., 2016) and cultural preservation. Focusing on the African continent, we note that there are few annotated datasets that are openly available for Natural Language Processing tasks such as classification. In South Africa, the South African Center for Digital Language Resources (SADiLaR) 3 has worked to curate datasets of local South African languages. There remain gaps such as accessing large corpora and data from sources such as broadcasters and news organizations as they have sizeable catalogs that are yet to make it into the public domain. In this work, we work to fill such a gap by collecting, annotating and training classifier models for news headlines in Setswana and Sepedi. As the data that we do find publicly is still small, we also have to deal with the challenges of Machine Learning on small data. Machine learning systems perform poorly in presence of small training sets due to overfitting. To avoid this problem, data augmentation can be used. The technique is well known in the field of image processing (Cubuk et al., 2019) . Data augmentation refers to the augmentation of the training set with artificial, generated, training examples. This technique is used less frequently in NLP but a number of few studies applied data augmentation.",
                "cite_spans": [
                    {
                        "start": 115,
                        "end": 134,
                        "text": "(Zoph et al., 2016)",
                        "ref_id": "BIBREF19"
                    },
                    {
                        "start": 1155,
                        "end": 1175,
                        "text": "(Cubuk et al., 2019)",
                        "ref_id": "BIBREF2"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Prior Work",
                "sec_num": "2."
            },
            {
                "text": "Silfverberg et al. 2017use data augmentation to counteract overfitting where recurrent neural network (RNN) Encoder-Decoder is implemented specifically geared toward a low-resource setting. Authors apply data augmentation by finding words that share word stem for example fizzle and fizzling share fizzl. Then authors replace a stem with another string.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Prior Work",
                "sec_num": "2."
            },
            {
                "text": "Zhang et al. (2015) apply data augmentation by using synonyms as substitute words for the original words. However, Kobayashi (2018) states that synonyms are very limited and the synonym-based augmentation cannot produce numerous different patterns from the original texts. Hence, Kobayashi (2018) proposes contextual data augmentation by replacing words that are predicted by a language model given the context surrounding the original words to be augmented.",
                "cite_spans": [
                    {
                        "start": 115,
                        "end": 131,
                        "text": "Kobayashi (2018)",
                        "ref_id": "BIBREF4"
                    },
                    {
                        "start": 280,
                        "end": 296,
                        "text": "Kobayashi (2018)",
                        "ref_id": "BIBREF4"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Prior Work",
                "sec_num": "2."
            },
            {
                "text": "As Wei and Zou (2019) states that these techniques are valid, they are not often used in practice because they have a high cost of implementation relative to performance gain. They propose an easy data augmentation as techniques for boosting performance on text classification tasks. These techniques involve synonym replacement, random insertion, random swap, and random deletion of a word. Authors observed good performance when using fraction of the dataset (%): 1, 5, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, as the data size increases, the accuracy also increases for augmented and original data. Original data obtained highest accuracy of 88.3% at 100% data size while augmented data obtained accuracy of 88.6% at 50% data size.",
                "cite_spans": [
                    {
                        "start": 3,
                        "end": 21,
                        "text": "Wei and Zou (2019)",
                        "ref_id": "BIBREF16"
                    },
                    {
                        "start": 466,
                        "end": 512,
                        "text": "1, 5, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100,",
                        "ref_id": null
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Prior Work",
                "sec_num": "2."
            },
            {
                "text": "3 www.sadilar.org",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Prior Work",
                "sec_num": "2."
            },
            {
                "text": "In this work, we investigate the development of a 2 step text augmentation method in order to be improve classification models for Setswana and Sepedi. To do this we had to first identify a suitable data source. Collect the data, and then annotate the datasets with news categories. After the data is collected and annotated, we then worked to create classification models from the data as is and then use a word embedding and document embedding augmentation approach. In this section discuss how data was collected as well as the approach we use to build classification models.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Developing news classification models for Setswana and Sepedi",
                "sec_num": "3."
            },
            {
                "text": "Before we can train classification models, we first have to collect data for 2 distinct processes. First, we present our collected news dataset as well as its annotation. We then discuss how we collected larger datasets for better vectorisation.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Data Collection, Cleaning and Annotation",
                "sec_num": "3.1."
            },
            {
                "text": "The news data we collected is from the SABC 4 Facebook pages. The SABC is the public broadcaster for South Africa. Specifically, data was collected from Motsweding FM (An SABC Setswana radio station) 5 and Thobela FM (An SABC Sepedi radio station) 6 . We scraped the news headlines that are published as posts on both Facebook pages. We claim no copyright for the content but used the data for research purposes. We summarize the datasets in Table 2 . We visualize the token distributions in Setswana and Sepedi in Figures 1 and 2 respectively. As can be seen, the datasets are relatively small and as such, we have to look at other ways to build vectorizers that can better generalize as the word token diversity would be very low.",
                "cite_spans": [
                    {
                        "start": 200,
                        "end": 201,
                        "text": "5",
                        "ref_id": null
                    }
                ],
                "ref_spans": [
                    {
                        "start": 442,
                        "end": 449,
                        "text": "Table 2",
                        "ref_id": "TABREF1"
                    }
                ],
                "eq_spans": [],
                "section": "News data collection and annotation",
                "sec_num": "3.1.1."
            },
            {
                "text": "We annotated the datasets by categorizing the news headlines into: Legal, General News,Sports, Other, Politics, Traffic News, Community Activities, Crime, Business and Foreign Affairs. Annotation was done after reading the headlines and coming up with categories that fit both datasets. We show the distribution of the labels in both the Setswana and Sepedi data sets in Figures 3 and 4 (Table 3) . We also make these vectorizers available for other researchers to use. ",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 371,
                        "end": 386,
                        "text": "Figures 3 and 4",
                        "ref_id": "FIGREF2"
                    },
                    {
                        "start": 387,
                        "end": 396,
                        "text": "(Table 3)",
                        "ref_id": "TABREF3"
                    }
                ],
                "eq_spans": [],
                "section": "News data collection and annotation",
                "sec_num": "3.1.1."
            },
            {
                "text": "We explore the use of a few classification algorithms to train news classification models. Specifically we train",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "News Classification Models",
                "sec_num": "3.2."
            },
            {
                "text": "\u2022 Logistic Regression,",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "News Classification Models",
                "sec_num": "3.2."
            },
            {
                "text": "\u2022 Support Vector Classification,",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "News Classification Models",
                "sec_num": "3.2."
            },
            {
                "text": "\u2022 XGBoost, and",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "News Classification Models",
                "sec_num": "3.2."
            },
            {
                "text": "\u2022 MLP Neural Network.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "News Classification Models",
                "sec_num": "3.2."
            },
            {
                "text": "To deal with the challenge of having a small amount of data on short text, we use data augmentation methods, specifically a word embedding based augmentation (Wang and Yang, 2015) , approach that has been shown to work well on short text (Marivate and Sefara, 2019) . We use this approach since we are not able to use other augmentation methods such as synonym based (requires developed Wordnet Synsets (Kobayashi, 2018) ), language models (larger corpora needed train) and back-translation (not readily available for South African languages). We develop and present the use of both word and document embeddings (as an augmentation quality check) inspired by a hierarchical approach to augmentation (Yu et al., 2019) .",
                "cite_spans": [
                    {
                        "start": 158,
                        "end": 179,
                        "text": "(Wang and Yang, 2015)",
                        "ref_id": "BIBREF15"
                    },
                    {
                        "start": 238,
                        "end": 265,
                        "text": "(Marivate and Sefara, 2019)",
                        "ref_id": "BIBREF6"
                    },
                    {
                        "start": 403,
                        "end": 420,
                        "text": "(Kobayashi, 2018)",
                        "ref_id": "BIBREF4"
                    },
                    {
                        "start": 699,
                        "end": 716,
                        "text": "(Yu et al., 2019)",
                        "ref_id": "BIBREF17"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "News Classification Models",
                "sec_num": "3.2."
            },
            {
                "text": "This Section presents the experiments and results. As this is still work in progress, we present some avenues explored in both training classifiers and evaluating them for the task of news headline classification for Setswana and Sepedi.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Experiments and Results",
                "sec_num": "4."
            },
            {
                "text": "For each classification problem, we perform 5 fold cross validation. For the bag-of-words and TFIDF vectorizers, we use a maximum token size of 20,000. For word embeddings and language embeddings we use size 50. All vectorizers were trained on the large corpora presented earlier.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Experimental Setup",
                "sec_num": "4.1."
            },
            {
                "text": "We run the baseline experiments with the original data using 5-fold cross validation. We show the performance (in terms of weighted F1 score) in the Figures 5 and 6 . We show the baseline results as orig. For both the Bag-of-Words (TF) and TFIDF, the MLP performs very well comparatively to the other methods. In general the TFIDF performs better. ",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 149,
                        "end": 164,
                        "text": "Figures 5 and 6",
                        "ref_id": "FIGREF4"
                    }
                ],
                "eq_spans": [],
                "section": "Baseline Experiments",
                "sec_num": "4.1.1."
            },
            {
                "text": "We applied augmentation in different ways. First for Sepedi and Setswana word embeddings (word2vec), we use word embedding-based augmentation. We augment each dataset 20 times on the training data while the validation data is left intact so as to be comparable to the earlier baselines. We show the effect of augmentation in Figures 5 and 6 (performance labeled with aug). The contextual, word2vec based, word augmentation improves the performance of most of the classifiers. If we now introduce a quality check using doc2vec (Algorithm 1) we also notice the impact on the performance for Sepedi (Figure 6 aug qual ) . We were not able to complete experiments with Setswana for the contextual augmentation with a quality check, but will continue working to better under stand the impact of such an algorithm in general. For example, it remains further work to investigate the effects of different similarity thresholds for the algorithm on the overall performance, how such an algorithm works on highly resourced languages vs low resourced languages, how we can make the algorithm efficient etc. It also interesting to look at how performance of classifiers that were only trained with word2vec features would fair. Deep neural networks are not used in this current work and as such we did not use recurrent neural networks, but we can create sentence features from -word2vec by either using: the mean of all word vectors in a sentence, the median of all word vectors in a sentence or the concatenated power means (R\u00fcckl\u00e9 et al., 2018) . We show the performance of using this approach with the classifiers used for Bag of Words and TFIDF earlier in Figure 7 . The performance for this approach is slightly worse with Algorithm 1: Contextual (Word2vec-based) augmentation algorithm with a doc2vec quality check Input: s: a sentence, run: maximum number of attempts at augmentation Output:\u015d a sentence with words replaced 1 def Augment(s,run): the best results for Sepedi news headline classification being with XGBoost on the augmented data. We hope to improve this performance using word2vec feature vectors using recurrent neural networks but currently are of the view that increasing the corpora sizes and the diversity of corpora for the pre-trained word embeddings may yield even better results. Finally, we show the confusion matrix of the best model in Sepedi on a test set in Figure 8 . The classifier categorizes General News, Politics and Legal news headlines best. For others there is more error. A larger news headline dataset is required and classification performance will also need to be compared to models trained on full news data (with the article body). For the Setswana classifiers, the confusion matrix shows that the data skew results in models that mostly can categorize between categories General News and Other. We need to look at re-sampling techniques to improve this performance as well as increasing the initial dataset size.",
                "cite_spans": [
                    {
                        "start": 1514,
                        "end": 1535,
                        "text": "(R\u00fcckl\u00e9 et al., 2018)",
                        "ref_id": "BIBREF11"
                    }
                ],
                "ref_spans": [
                    {
                        "start": 596,
                        "end": 616,
                        "text": "(Figure 6 aug qual )",
                        "ref_id": "FIGREF5"
                    },
                    {
                        "start": 1649,
                        "end": 1657,
                        "text": "Figure 7",
                        "ref_id": "FIGREF7"
                    },
                    {
                        "start": 2383,
                        "end": 2391,
                        "text": "Figure 8",
                        "ref_id": "FIGREF8"
                    }
                ],
                "eq_spans": [],
                "section": "Augmentation",
                "sec_num": "4.1.2."
            },
            {
                "text": "2 Let #\u00bb V",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Augmentation",
                "sec_num": "4.1.2."
            },
            {
                "text": "This work introduced the collection and annotation of Setswana and Sepedi news headline data. It remains a challenge that in South Africa, 9 of the 11 official languages have little data such as this that is available to researchers in order to build downstream models that can be used in different applications. Through this work we hope to provide an example of what may be possible even when we have a limited annotated dataset. We exploit the availability of other free text data in Setswana and Sepedi in order to build pre-trained vectorizers for the languages (which are released as part of this work) and then train classification models for news categories. It remains future work to collect more local language news headlines and text to train more models. We have identified other government news sources that can be used. On training embedding models with the data we have collected, further studies are needed to look at how augmentation using the embedding models improve the quality of augmentation.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Conclusion and Future Work",
                "sec_num": "5."
            },
            {
                "text": "Bojanowski, P., Grave, E., Joulin, A., and Mikolov, T. (2017) . Enriching word vectors with subword informa-",
                "cite_spans": [
                    {
                        "start": 39,
                        "end": 61,
                        "text": "and Mikolov, T. (2017)",
                        "ref_id": null
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Bibliographical References",
                "sec_num": "6."
            },
            {
                "text": "http://www.sabc.co.za/",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "",
                "sec_num": null
            },
            {
                "text": "http://www.sabc.co.za/ 5 https://www.facebook.com/MotswedingFM/ 6 https://www.facebook.com/thobelafmyaka/",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "",
                "sec_num": null
            }
        ],
        "back_matter": [],
        "bib_entries": {
            "BIBREF1": {
                "ref_id": "b1",
                "title": "Newspaper circulation statistics for the period",
                "authors": [
                    {
                        "first": "A",
                        "middle": [],
                        "last": "Bureau Of Circulations",
                        "suffix": ""
                    }
                ],
                "year": 2019,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Bureau of Circulations, A. (2019). Newspaper circulation statistics for the period January-March 2019 (ABC Q1 2019).",
                "links": null
            },
            "BIBREF2": {
                "ref_id": "b2",
                "title": "Autoaugment: Learning augmentation strategies from data",
                "authors": [
                    {
                        "first": "E",
                        "middle": [
                            "D"
                        ],
                        "last": "Cubuk",
                        "suffix": ""
                    },
                    {
                        "first": "B",
                        "middle": [],
                        "last": "Zoph",
                        "suffix": ""
                    },
                    {
                        "first": "D",
                        "middle": [],
                        "last": "Mane",
                        "suffix": ""
                    },
                    {
                        "first": "V",
                        "middle": [],
                        "last": "Vasudevan",
                        "suffix": ""
                    },
                    {
                        "first": "Q",
                        "middle": [
                            "V"
                        ],
                        "last": "Le",
                        "suffix": ""
                    }
                ],
                "year": 2019,
                "venue": "Proceedings of the IEEE conference on computer vision and pattern recognition",
                "volume": "",
                "issue": "",
                "pages": "113--123",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Cubuk, E. D., Zoph, B., Mane, D., Vasudevan, V., and Le, Q. V. (2019). Autoaugment: Learning augmentation strategies from data. In Proceedings of the IEEE confer- ence on computer vision and pattern recognition, pages 113-123.",
                "links": null
            },
            "BIBREF3": {
                "ref_id": "b3",
                "title": "Google's multilingual neural machine translation system: Enabling zero-shot translation",
                "authors": [
                    {
                        "first": "M",
                        "middle": [],
                        "last": "Johnson",
                        "suffix": ""
                    },
                    {
                        "first": "M",
                        "middle": [],
                        "last": "Schuster",
                        "suffix": ""
                    },
                    {
                        "first": "Q",
                        "middle": [
                            "V"
                        ],
                        "last": "Le",
                        "suffix": ""
                    },
                    {
                        "first": "M",
                        "middle": [],
                        "last": "Krikun",
                        "suffix": ""
                    },
                    {
                        "first": "Y",
                        "middle": [],
                        "last": "Wu",
                        "suffix": ""
                    },
                    {
                        "first": "Z",
                        "middle": [],
                        "last": "Chen",
                        "suffix": ""
                    },
                    {
                        "first": "N",
                        "middle": [],
                        "last": "Thorat",
                        "suffix": ""
                    },
                    {
                        "first": "F",
                        "middle": [],
                        "last": "Vi\u00e9gas",
                        "suffix": ""
                    },
                    {
                        "first": "M",
                        "middle": [],
                        "last": "Wattenberg",
                        "suffix": ""
                    },
                    {
                        "first": "G",
                        "middle": [],
                        "last": "Corrado",
                        "suffix": ""
                    }
                ],
                "year": 2017,
                "venue": "Transactions of the Association for Computational Linguistics",
                "volume": "5",
                "issue": "",
                "pages": "339--351",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Johnson, M., Schuster, M., Le, Q. V., Krikun, M., Wu, Y., Chen, Z., Thorat, N., Vi\u00e9gas, F., Wattenberg, M., Cor- rado, G., et al. (2017). Google's multilingual neural ma- chine translation system: Enabling zero-shot translation. Transactions of the Association for Computational Lin- guistics, 5:339-351.",
                "links": null
            },
            "BIBREF4": {
                "ref_id": "b4",
                "title": "Contextual augmentation: Data augmentation by words with paradigmatic relations",
                "authors": [
                    {
                        "first": "S",
                        "middle": [],
                        "last": "Kobayashi",
                        "suffix": ""
                    }
                ],
                "year": 2018,
                "venue": "Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies",
                "volume": "2",
                "issue": "",
                "pages": "452--457",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Kobayashi, S. (2018). Contextual augmentation: Data augmentation by words with paradigmatic relations. In Proceedings of the 2018 Conference of the North Ameri- can Chapter of the Association for Computational Lin- guistics: Human Language Technologies, Volume 2 (Short Papers), volume 2, pages 452-457.",
                "links": null
            },
            "BIBREF5": {
                "ref_id": "b5",
                "title": "Reuters-21578 text categorization collection data set",
                "authors": [
                    {
                        "first": "D",
                        "middle": [
                            "D"
                        ],
                        "last": "Lewis",
                        "suffix": ""
                    }
                ],
                "year": 1997,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Lewis, D. D. (1997). Reuters-21578 text categorization collection data set.",
                "links": null
            },
            "BIBREF6": {
                "ref_id": "b6",
                "title": "Improving short text classification through global augmentation methods",
                "authors": [
                    {
                        "first": "V",
                        "middle": [],
                        "last": "Marivate",
                        "suffix": ""
                    },
                    {
                        "first": "T",
                        "middle": [],
                        "last": "Sefara",
                        "suffix": ""
                    }
                ],
                "year": 2019,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {
                    "arXiv": [
                        "arXiv:1907.03752"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Marivate, V. and Sefara, T. (2019). Improving short text classification through global augmentation methods. arXiv preprint arXiv:1907.03752.",
                "links": null
            },
            "BIBREF7": {
                "ref_id": "b7",
                "title": "African embeddings",
                "authors": [
                    {
                        "first": "V",
                        "middle": [],
                        "last": "Marivate",
                        "suffix": ""
                    },
                    {
                        "first": "T",
                        "middle": [],
                        "last": "Sefara",
                        "suffix": ""
                    }
                ],
                "year": 2020,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {
                    "DOI": [
                        "10.5281/zenodo.3668481"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Marivate, V. and Sefara, T. (2020a). African em- beddings [nlp]. https://doi.org/10.5281/ zenodo.3668481, February.",
                "links": null
            },
            "BIBREF8": {
                "ref_id": "b8",
                "title": "South African news data dataset",
                "authors": [
                    {
                        "first": "V",
                        "middle": [],
                        "last": "Marivate",
                        "suffix": ""
                    },
                    {
                        "first": "T",
                        "middle": [],
                        "last": "Sefara",
                        "suffix": ""
                    }
                ],
                "year": 2020,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {
                    "DOI": [
                        "10.5281/zenodo.3668489"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Marivate, V. and Sefara, T. (2020b). South African news data dataset. https://doi.org/10.5281/ zenodo.3668489.",
                "links": null
            },
            "BIBREF9": {
                "ref_id": "b9",
                "title": "Distributed representations of words and phrases and their compositionality",
                "authors": [
                    {
                        "first": "T",
                        "middle": [],
                        "last": "Mikolov",
                        "suffix": ""
                    },
                    {
                        "first": "I",
                        "middle": [],
                        "last": "Sutskever",
                        "suffix": ""
                    },
                    {
                        "first": "K",
                        "middle": [],
                        "last": "Chen",
                        "suffix": ""
                    },
                    {
                        "first": "G",
                        "middle": [
                            "S"
                        ],
                        "last": "Corrado",
                        "suffix": ""
                    },
                    {
                        "first": "J",
                        "middle": [],
                        "last": "Dean",
                        "suffix": ""
                    }
                ],
                "year": 2013,
                "venue": "Advances in neural information processing systems",
                "volume": "",
                "issue": "",
                "pages": "3111--3119",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Mikolov, T., Sutskever, I., Chen, K., Corrado, G. S., and Dean, J. (2013). Distributed representations of words and phrases and their compositionality. In Advances in neural information processing systems, pages 3111- 3119.",
                "links": null
            },
            "BIBREF10": {
                "ref_id": "b10",
                "title": "Explaining global patterns of language diversity",
                "authors": [
                    {
                        "first": "D",
                        "middle": [],
                        "last": "Nettle",
                        "suffix": ""
                    }
                ],
                "year": 1998,
                "venue": "Journal of anthropological archaeology",
                "volume": "17",
                "issue": "4",
                "pages": "354--374",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Nettle, D. (1998). Explaining global patterns of lan- guage diversity. Journal of anthropological archaeol- ogy, 17(4):354-374.",
                "links": null
            },
            "BIBREF11": {
                "ref_id": "b11",
                "title": "Concatenated power mean word embeddings as universal cross-lingual sentence representations",
                "authors": [
                    {
                        "first": "A",
                        "middle": [],
                        "last": "R\u00fcckl\u00e9",
                        "suffix": ""
                    },
                    {
                        "first": "S",
                        "middle": [],
                        "last": "Eger",
                        "suffix": ""
                    },
                    {
                        "first": "M",
                        "middle": [],
                        "last": "Peyrard",
                        "suffix": ""
                    },
                    {
                        "first": "I",
                        "middle": [],
                        "last": "Gurevych",
                        "suffix": ""
                    }
                ],
                "year": 2018,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {
                    "arXiv": [
                        "arXiv:1803.01400"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "R\u00fcckl\u00e9, A., Eger, S., Peyrard, M., and Gurevych, I. (2018). Concatenated power mean word embeddings as universal cross-lingual sentence representations. arXiv preprint arXiv:1803.01400.",
                "links": null
            },
            "BIBREF12": {
                "ref_id": "b12",
                "title": "The new york times annotated corpus. Linguistic Data Consortium",
                "authors": [
                    {
                        "first": "E",
                        "middle": [],
                        "last": "Sandhaus",
                        "suffix": ""
                    }
                ],
                "year": 2008,
                "venue": "",
                "volume": "6",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Sandhaus, E. (2008). The new york times annotated corpus. Linguistic Data Consortium, Philadelphia, 6(12):e26752.",
                "links": null
            },
            "BIBREF13": {
                "ref_id": "b13",
                "title": "Data augmentation for morphological reinflection",
                "authors": [
                    {
                        "first": "M",
                        "middle": [],
                        "last": "Silfverberg",
                        "suffix": ""
                    },
                    {
                        "first": "A",
                        "middle": [],
                        "last": "Wiemerslage",
                        "suffix": ""
                    },
                    {
                        "first": "L",
                        "middle": [],
                        "last": "Liu",
                        "suffix": ""
                    },
                    {
                        "first": "L",
                        "middle": [
                            "J"
                        ],
                        "last": "Mao",
                        "suffix": ""
                    }
                ],
                "year": 2017,
                "venue": "Proceedings of the CoNLL SIGMORPHON 2017 Shared Task: Universal Morphological Reinflection",
                "volume": "",
                "issue": "",
                "pages": "90--99",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Silfverberg, M., Wiemerslage, A., Liu, L., and Mao, L. J. (2017). Data augmentation for morphological reinflec- tion. In Proceedings of the CoNLL SIGMORPHON 2017 Shared Task: Universal Morphological Reinflec- tion, pages 90-99.",
                "links": null
            },
            "BIBREF14": {
                "ref_id": "b14",
                "title": "Lorelei language packs: Data, tools, and resources for technology development in low resource languages",
                "authors": [
                    {
                        "first": "S",
                        "middle": [],
                        "last": "Strassel",
                        "suffix": ""
                    },
                    {
                        "first": "J",
                        "middle": [],
                        "last": "Tracey",
                        "suffix": ""
                    }
                ],
                "year": 2016,
                "venue": "Proceedings of the Tenth International Conference on Language Resources and Evaluation (LREC'16)",
                "volume": "",
                "issue": "",
                "pages": "3273--3280",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Strassel, S. and Tracey, J. (2016). Lorelei language packs: Data, tools, and resources for technology development in low resource languages. In Proceedings of the Tenth International Conference on Language Resources and Evaluation (LREC'16), pages 3273-3280.",
                "links": null
            },
            "BIBREF15": {
                "ref_id": "b15",
                "title": "That's so annoying!!!: A lexical and frame-semantic embedding based data augmentation approach to automatic categorization of annoying behaviors using# petpeeve tweets",
                "authors": [
                    {
                        "first": "W",
                        "middle": [
                            "Y"
                        ],
                        "last": "Wang",
                        "suffix": ""
                    },
                    {
                        "first": "D",
                        "middle": [],
                        "last": "Yang",
                        "suffix": ""
                    }
                ],
                "year": 2015,
                "venue": "Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing",
                "volume": "",
                "issue": "",
                "pages": "2557--2563",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Wang, W. Y. and Yang, D. (2015). That's so annoying!!!: A lexical and frame-semantic embedding based data aug- mentation approach to automatic categorization of an- noying behaviors using# petpeeve tweets. In Proceed- ings of the 2015 Conference on Empirical Methods in Natural Language Processing, pages 2557-2563.",
                "links": null
            },
            "BIBREF16": {
                "ref_id": "b16",
                "title": "Eda: Easy data augmentation techniques for boosting performance on text classification tasks",
                "authors": [
                    {
                        "first": "J",
                        "middle": [],
                        "last": "Wei",
                        "suffix": ""
                    },
                    {
                        "first": "K",
                        "middle": [],
                        "last": "Zou",
                        "suffix": ""
                    }
                ],
                "year": 2019,
                "venue": "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)",
                "volume": "",
                "issue": "",
                "pages": "6383--6389",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Wei, J. and Zou, K. (2019). Eda: Easy data augmentation techniques for boosting performance on text classifica- tion tasks. In Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Lan- guage Processing (EMNLP-IJCNLP), pages 6383-6389.",
                "links": null
            },
            "BIBREF17": {
                "ref_id": "b17",
                "title": "Hierarchical data augmentation and the application in text classification",
                "authors": [
                    {
                        "first": "S",
                        "middle": [],
                        "last": "Yu",
                        "suffix": ""
                    },
                    {
                        "first": "J",
                        "middle": [],
                        "last": "Yang",
                        "suffix": ""
                    },
                    {
                        "first": "D",
                        "middle": [],
                        "last": "Liu",
                        "suffix": ""
                    },
                    {
                        "first": "R",
                        "middle": [],
                        "last": "Li",
                        "suffix": ""
                    },
                    {
                        "first": "Y",
                        "middle": [],
                        "last": "Zhang",
                        "suffix": ""
                    },
                    {
                        "first": "S",
                        "middle": [],
                        "last": "Zhao",
                        "suffix": ""
                    }
                ],
                "year": 2019,
                "venue": "IEEE Access",
                "volume": "7",
                "issue": "",
                "pages": "185476--185485",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Yu, S., Yang, J., Liu, D., Li, R., Zhang, Y., and Zhao, S. (2019). Hierarchical data augmentation and the ap- plication in text classification. IEEE Access, 7:185476- 185485.",
                "links": null
            },
            "BIBREF18": {
                "ref_id": "b18",
                "title": "Character-level convolutional networks for text classification",
                "authors": [
                    {
                        "first": "X",
                        "middle": [],
                        "last": "Zhang",
                        "suffix": ""
                    },
                    {
                        "first": "J",
                        "middle": [],
                        "last": "Zhao",
                        "suffix": ""
                    },
                    {
                        "first": "Y",
                        "middle": [],
                        "last": "Lecun",
                        "suffix": ""
                    }
                ],
                "year": 2015,
                "venue": "Advances in neural information processing systems",
                "volume": "",
                "issue": "",
                "pages": "649--657",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Zhang, X., Zhao, J., and LeCun, Y. (2015). Character-level convolutional networks for text classification. In Ad- vances in neural information processing systems, pages 649-657.",
                "links": null
            },
            "BIBREF19": {
                "ref_id": "b19",
                "title": "Transfer learning for low-resource neural machine translation",
                "authors": [
                    {
                        "first": "B",
                        "middle": [],
                        "last": "Zoph",
                        "suffix": ""
                    },
                    {
                        "first": "D",
                        "middle": [],
                        "last": "Yuret",
                        "suffix": ""
                    },
                    {
                        "first": "J",
                        "middle": [],
                        "last": "May",
                        "suffix": ""
                    },
                    {
                        "first": "K",
                        "middle": [],
                        "last": "Knight",
                        "suffix": ""
                    }
                ],
                "year": 2016,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {
                    "arXiv": [
                        "arXiv:1604.02201"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Zoph, B., Yuret, D., May, J., and Knight, K. (2016). Trans- fer learning for low-resource neural machine translation. arXiv preprint arXiv:1604.02201.",
                "links": null
            }
        },
        "ref_entries": {
            "FIGREF0": {
                "text": "Figure 1: Setswana Wordcloud",
                "type_str": "figure",
                "uris": null,
                "num": null
            },
            "FIGREF1": {
                "text": "Figure 3: Setswana news title category distribution",
                "type_str": "figure",
                "uris": null,
                "num": null
            },
            "FIGREF2": {
                "text": "Sepedi news title category distribution way that we could create Bag of Words, TFIDF, Word2vec(Mikolov et al., 2013) andFastText (Bojanowski et al.,  2017) vectorizers",
                "type_str": "figure",
                "uris": null,
                "num": null
            },
            "FIGREF4": {
                "text": "Baseline classification model performance for Setswana news title categorization",
                "type_str": "figure",
                "uris": null,
                "num": null
            },
            "FIGREF5": {
                "text": "Baseline classification model performance for Sepedi news title categorization",
                "type_str": "figure",
                "uris": null,
                "num": null
            },
            "FIGREF6": {
                "text": "similar words of w i ; 6 s 0 \u2190 randomly select a word from #\u00bb w given weights as distance; 7\u015d \u2190replace w i with similar word s 0 ;",
                "type_str": "figure",
                "uris": null,
                "num": null
            },
            "FIGREF7": {
                "text": "Word2Vec feature based performance for news headline classification",
                "type_str": "figure",
                "uris": null,
                "num": null
            },
            "FIGREF8": {
                "text": "Confusion Matrix of News headline classification models",
                "type_str": "figure",
                "uris": null,
                "num": null
            },
            "TABREF0": {
                "html": null,
                "num": null,
                "type_str": "table",
                "text": "Top newspapers in South Africa with their lan-",
                "content": "<table><tr><td>guages</td><td/><td/></tr><tr><td>Paper</td><td colspan=\"2\">Language Circulation</td></tr><tr><td>Sunday Times</td><td>English</td><td>260132</td></tr><tr><td>Soccer Laduma</td><td>English</td><td>252041</td></tr><tr><td>Daily Sun</td><td>English</td><td>141187</td></tr><tr><td>Rapport</td><td colspan=\"2\">Afrikaans 113636</td></tr><tr><td>Isolezwe</td><td>isiZulu</td><td>86342</td></tr><tr><td>Sowetan</td><td>English</td><td>70120</td></tr><tr><td>Isolezwe ngeSonto</td><td>isiZulu</td><td>65489</td></tr><tr><td colspan=\"2\">Isolezwe ngoMgqibelo isiZulu</td><td>64676</td></tr><tr><td>Son</td><td colspan=\"2\">Afrikaans 62842</td></tr></table>"
            },
            "TABREF1": {
                "html": null,
                "num": null,
                "type_str": "table",
                "text": "",
                "content": "<table><tr><td colspan=\"2\">: News Data Sets</td><td/></tr><tr><td/><td colspan=\"2\">Setswana Sepedi</td></tr><tr><td>Corpus Size (headlines)</td><td>219</td><td>491</td></tr><tr><td colspan=\"2\">Number of Tokens (words) 1561</td><td>3018</td></tr></table>"
            },
            "TABREF2": {
                "html": null,
                "num": null,
                "type_str": "table",
                "text": "TrafficTona ya toka Michael Masutha,ore bahlankedi ba kgoro ya ditirelo tsa tshokollo ya bagolegwa bao ba tateditswego dithieeletsong tsa khomisene ya go nyakisisa mabarebare a go gogwa ga mmuso ka nko,ba swanetse go hlalosa gore ke ka lebaka la eng ba sa swanelwa go fegwa mesomong Legal The full dataset is made available online (Marivate and Sefara, 2020b) for further research use and improvements to the annotation 7 . As previously discussed, we used larger corpora to create language vectorizers for downstream NLP tasks. We discuss this next.",
                "content": "<table><tr><td/><td/><td/><td/><td colspan=\"3\">Setswana News Title Categories</td><td/></tr><tr><td/><td>General News</td><td/><td/><td/><td/><td/><td/></tr><tr><td/><td>Legal</td><td/><td/><td/><td/><td/><td/></tr><tr><td/><td>Other</td><td/><td/><td/><td/><td/><td/></tr><tr><td/><td>Politics</td><td/><td/><td/><td/><td/><td/></tr><tr><td>Category</td><td>Crime Foreign Affairs</td><td/><td/><td/><td/><td/><td/></tr><tr><td/><td>Traffic News</td><td/><td/><td/><td/><td/><td/></tr><tr><td/><td>Sports</td><td/><td/><td/><td/><td/><td/></tr><tr><td/><td>Community Activities</td><td/><td/><td/><td/><td/><td/></tr><tr><td/><td>Business</td><td/><td/><td/><td/><td/><td/></tr><tr><td/><td>0</td><td>10</td><td>20</td><td>30</td><td>40 Frequency</td><td>50</td><td>60</td><td>70</td></tr></table>"
            },
            "TABREF3": {
                "html": null,
                "num": null,
                "type_str": "table",
                "text": "",
                "content": "<table><tr><td colspan=\"3\">: Vectorizer Corpora Sizes in number of lines (num-</td></tr><tr><td>ber of tokens)</td><td/><td/></tr><tr><td>Source</td><td>Setswana</td><td>Sepedi</td></tr><tr><td>Wikipedia</td><td>478(21924) 8</td><td>300(10190) 9</td></tr><tr><td>JW300 10</td><td>874464(70251)</td><td>618275(53004)</td></tr><tr><td>Bible</td><td>31102(42233)</td><td>29723(38709)</td></tr><tr><td colspan=\"2\">Constitution 11 7077(3940)</td><td>6564(3819)</td></tr><tr><td>SADILAR 12</td><td>33144(61766)</td><td>67036(87838)</td></tr><tr><td>Total</td><td colspan=\"2\">946264(152027) 721977(149355)</td></tr></table>"
            }
        }
    }
}