File size: 84,169 Bytes
6fa4bc9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
{
    "paper_id": "R11-1037",
    "header": {
        "generated_with": "S2ORC 1.0.0",
        "date_generated": "2023-01-19T15:04:26.344949Z"
    },
    "title": "Modelling Entity Instantiations",
    "authors": [
        {
            "first": "Andrew",
            "middle": [],
            "last": "Mckinlay",
            "suffix": "",
            "affiliation": {
                "laboratory": "",
                "institution": "University of Leeds",
                "location": {
                    "country": "UK"
                }
            },
            "email": ""
        },
        {
            "first": "Katja",
            "middle": [],
            "last": "Markert",
            "suffix": "",
            "affiliation": {
                "laboratory": "",
                "institution": "University of Leeds",
                "location": {
                    "country": "UK"
                }
            },
            "email": "markert@comp.leeds.ac.uk"
        }
    ],
    "year": "",
    "venue": null,
    "identifiers": {},
    "abstract": "We introduce the problem of detecting Entity Instantiations, a type of entity relation in which a set of entities is introduced, and either a member or subset of this set is mentioned afterwards. We perform the first, reliable, corpus study of Entity Instantiations, concentrating on intersentential annotation. We then develop the first automatic instantiation detector, which incorporates lexical, contextual and world knowledge and shows significant improvements over a strong baseline.",
    "pdf_parse": {
        "paper_id": "R11-1037",
        "_pdf_hash": "",
        "abstract": [
            {
                "text": "We introduce the problem of detecting Entity Instantiations, a type of entity relation in which a set of entities is introduced, and either a member or subset of this set is mentioned afterwards. We perform the first, reliable, corpus study of Entity Instantiations, concentrating on intersentential annotation. We then develop the first automatic instantiation detector, which incorporates lexical, contextual and world knowledge and shows significant improvements over a strong baseline.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Abstract",
                "sec_num": null
            }
        ],
        "body_text": [
            {
                "text": "In this paper we annotate and classify Entity Instantiations. An Entity Instantiation is a noncoreferent entity relationship, where a set of entities is mentioned, and then a member or subset 1 of this set is introduced. Example 1 shows a pair of sentences with the set in bold and set member in italics. 2 Examples 2 and 3 show a pair of sentences with a set in bold and subset in italics.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "(1) a. Some European funds recently have skyrocketed. b. Spain Fund has surged to a startling 120% premium.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "(2) a. Bids totalling $515 million were submitted. b. Accepted offers ranged from 8.38% to 8.395%",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "1 When we refer to a subset, we mean a proper subset. We consider two equal sets to be coreferent, and not participating in an Entity Instantiation.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "2 Examples 1, 2, 3, 8 and 9 are adapted from the Penn Treebank Wall Street Journal Corpus (Marcus et al., 1993) .",
                "cite_spans": [
                    {
                        "start": 90,
                        "end": 111,
                        "text": "(Marcus et al., 1993)",
                        "ref_id": "BIBREF17"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "(3) a. In the aftermath of the downturn many manufacturers have struggled. b. Those relying on foreign imports have had the most difficulty.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "The detection of Entity Instantiations is not tackled in ACE (ACE, 2000 (ACE, -2005 or MUC (MUC, 1987 (MUC, -1998 , the two most popular schemes of semantic relation annotation. It is, however, important as it can supplement knowledge about the member or subset. In Example 4 below, the Entity Instantiation between 'several EU countries' and 'the UK' gives us the knowledge that not only are interest rates dropping in the UK, but inflation is rising as well. Entity Instantiations can also aid the interpretation of sentiment -in Example 5, the author's thoughts about the pay of Wayne Rooney can be inferred from the negative sentiment of the first sentence. In some instances, the member or subset is even uninterpretable without the set. In Example 3, 'Those relying on foreign imports' requires 'many manufacturers' to interpret the missing head noun. The problem of detecting these types of Entity Instantiation overlaps with bridging anaphora.",
                "cite_spans": [
                    {
                        "start": 61,
                        "end": 71,
                        "text": "(ACE, 2000",
                        "ref_id": null
                    },
                    {
                        "start": 72,
                        "end": 83,
                        "text": "(ACE, -2005",
                        "ref_id": null
                    },
                    {
                        "start": 91,
                        "end": 101,
                        "text": "(MUC, 1987",
                        "ref_id": null
                    },
                    {
                        "start": 102,
                        "end": 113,
                        "text": "(MUC, -1998",
                        "ref_id": null
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "(4) a. Inflation has increased sharply in several EU countries. b. In the UK, this has accompanied a drop in interest rates. In Examples 6 and 7, the contextual information about the attitudes of the workers is necessary to establish whether an Entity Instantiation exists.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "(6) a. Some workers are opposed to strike action. b. John Smith fears that a strike could damage the industry's public perception.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "(7) a. Some workers are opposed to strike action. b. David Jones, however, is willing to put his job on the line for the cause. (Not an instantiation.)",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "In this paper we present an annotated corpus of Entity Instantiations, containing 648 annotated instantiations over 25 texts. We then use this corpus to train and test an automatic Entity Instantiation identifier, which gains significant improvements over a unigram baseline.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "Our work is related to Relation Extraction (RE), which is the discovery of semantic relations between pairs of entities. Much of the work in this field is connected to the Message Understanding Conferences (MUC, 1987 (MUC, -1998 and the NIST Automatic Content Extraction (ACE, 2000 (ACE, -2005 programs, both of which provide annotated corpora of semantic relations. The ACE-2004 scheme includes 7 broad relation types, divided into a total of 23 subtypes, such as ART.User-Owner to indicate the ownership of an object by a person, and ORG-AFF.Employment to represent the employment of a person by an organisation. Entity Instantiations are not considered in the MUC and ACE annotation schemes, which consider relationships between different types of entity, such as those between persons and locations, rather than our groups and instances of entities of the same type. However, the algorithms used to classify these semantic relationship might still be applicable to our problem.",
                "cite_spans": [
                    {
                        "start": 206,
                        "end": 216,
                        "text": "(MUC, 1987",
                        "ref_id": null
                    },
                    {
                        "start": 217,
                        "end": 228,
                        "text": "(MUC, -1998",
                        "ref_id": null
                    },
                    {
                        "start": 271,
                        "end": 281,
                        "text": "(ACE, 2000",
                        "ref_id": null
                    },
                    {
                        "start": 282,
                        "end": 293,
                        "text": "(ACE, -2005",
                        "ref_id": null
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Related Work",
                "sec_num": "2"
            },
            {
                "text": "A variety of automatic RE algorithms have been developed, falling largely into two groups; those that learn from tree-kernels and those that use traditional, flat features. In one approach of the first type, (Zhou et al., 2007) use tree kernels to capture the structured information held in the parse trees of entities. They implement an algorithm which dynamically decides how much context to include as part of the tree, and in conjunction with some flat features it achieves an F-score of 75.8% on the 7 broad relation types in the ACE-2004 dataset.",
                "cite_spans": [
                    {
                        "start": 208,
                        "end": 227,
                        "text": "(Zhou et al., 2007)",
                        "ref_id": "BIBREF32"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Related Work",
                "sec_num": "2"
            },
            {
                "text": "Two recent flat-featured approaches successfully exploit background knowledge to improve RE. (Chan and Roth, 2010) implement features which use Wikipedia queries to search for parentchild relationships between entities. They attain an F-score of 68.2% at the coarse-grained level and 54.4% at the fine-grained level on a set of directed, sentence-internal relations from the ACE-2004 dataset. (Sun et al., 2011) generate largescale word clusters from the TDT5 corpus and incorporate information regarding which cluster the mention head word belongs to. This method results in an F-score of 71.5%.",
                "cite_spans": [
                    {
                        "start": 93,
                        "end": 114,
                        "text": "(Chan and Roth, 2010)",
                        "ref_id": "BIBREF4"
                    },
                    {
                        "start": 393,
                        "end": 411,
                        "text": "(Sun et al., 2011)",
                        "ref_id": "BIBREF30"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Related Work",
                "sec_num": "2"
            },
            {
                "text": "Our work is also related to the problem of bridging anaphora. A bridging anaphor is an anaphor that is not coreferent to its antecedent, but connected by another relationship, such as meronymy. Prior work in theoretical linguistics and corpus linguistics (Asher and Lascarides, 1998; Fraurud, 1990; Poesio and Vieira, 1998) has offered significant insight into bridging. A number of bridging publications also refer to set membership or subset relationships specifically (Clark, 1975; Prince, 1981; Gardent et al., 2003) . Further work has concentrated on the development of algorithms for the resolution of bridging anaphora. (Markert et al., 1996; Vieira and Poesio, 2000) create end-to-end systems for bridging resolution, while both (Markert et al., 2003) and (Poesio et al., 2004) tackle solely part-of bridging references.",
                "cite_spans": [
                    {
                        "start": 255,
                        "end": 283,
                        "text": "(Asher and Lascarides, 1998;",
                        "ref_id": null
                    },
                    {
                        "start": 284,
                        "end": 298,
                        "text": "Fraurud, 1990;",
                        "ref_id": "BIBREF10"
                    },
                    {
                        "start": 299,
                        "end": 323,
                        "text": "Poesio and Vieira, 1998)",
                        "ref_id": "BIBREF24"
                    },
                    {
                        "start": 471,
                        "end": 484,
                        "text": "(Clark, 1975;",
                        "ref_id": "BIBREF6"
                    },
                    {
                        "start": 485,
                        "end": 498,
                        "text": "Prince, 1981;",
                        "ref_id": "BIBREF27"
                    },
                    {
                        "start": 499,
                        "end": 520,
                        "text": "Gardent et al., 2003)",
                        "ref_id": "BIBREF11"
                    },
                    {
                        "start": 627,
                        "end": 649,
                        "text": "(Markert et al., 1996;",
                        "ref_id": "BIBREF19"
                    },
                    {
                        "start": 650,
                        "end": 674,
                        "text": "Vieira and Poesio, 2000)",
                        "ref_id": "BIBREF31"
                    },
                    {
                        "start": 737,
                        "end": 759,
                        "text": "(Markert et al., 2003)",
                        "ref_id": "BIBREF20"
                    },
                    {
                        "start": 764,
                        "end": 785,
                        "text": "(Poesio et al., 2004)",
                        "ref_id": "BIBREF25"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Related Work",
                "sec_num": "2"
            },
            {
                "text": "Our work differs from bridging in that often Entity Instantiations are not anaphoric (see Examples 1, 4, 5 and 6). There is, however, some overlap. For instance, in Example 3 the subset 'Those relying on foreign imports' requires knowledge of the set 'manufacturers' to be understood.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Related Work",
                "sec_num": "2"
            },
            {
                "text": "Our work is also related to (Recasens et al., 2010) , in which the authors develop a typology of near-identity coreference relationships, including largely overlapping sets. Set membership relations, however, are not tackled.",
                "cite_spans": [
                    {
                        "start": 28,
                        "end": 51,
                        "text": "(Recasens et al., 2010)",
                        "ref_id": "BIBREF28"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Related Work",
                "sec_num": "2"
            },
            {
                "text": "To create a gold standard corpus creation we annotate full texts from the Penn Treebank (PTB) Wall Street Journal corpus (Marcus et al., 1993) for the presence of two types of Entity Instantiation:",
                "cite_spans": [
                    {
                        "start": 121,
                        "end": 142,
                        "text": "(Marcus et al., 1993)",
                        "ref_id": "BIBREF17"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Corpus Study",
                "sec_num": "3"
            },
            {
                "text": "Set Member A set of entities is introduced, and a single member of that set is mentioned.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Corpus Study",
                "sec_num": "3"
            },
            {
                "text": "Subset A set of entities is introduced, and a smaller subset of these is mentioned.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Corpus Study",
                "sec_num": "3"
            },
            {
                "text": "We limit our annotation to instantiations that occur between adjacent sentences. We do not annotate intrasententially, as we suspect that many intrasentential instantiations may be easily discoverable by syntactic analysis (for example, the instantiations in 'Some football managers, such as Sir Alex Ferguson' and 'Among these workers, John Smith').. Our annotation tool automatically identifies plural and singular noun phrases (NPs) that are candidates for participating in Entity Instantiations, separately displaying plural-plural NP pairs for subset annotation and plural-singular NP pairs for set member annotation. We automatically remove NPs that are appositions or predicates, and therefore not mentions. Our tool also includes the option to manually mark noun phrases as \"Not a mention\". We use this to exclude instances of nonreferential it, noun phrases that are idiomaticsuch as pie in the sky -and generic pronouns.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Corpus Study",
                "sec_num": "3"
            },
            {
                "text": "The annotator then indicates whether each pair of NPs forms an Entity Instantiation. We annotate each pair of sentences twice; once with potential sets in first sentence and potential set members and subsets in the second sentence, and once with potential sets in the second sentence and potential set members and subsets in the first sentence.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Corpus Study",
                "sec_num": "3"
            },
            {
                "text": "To ascertain the reliability and replicability of our annotations, we undertook a short agreement study. Five texts containing a total of 6,177 NP pairs were independently annotated by the two authors of this study, and their agreement was measured in the following three variations: 3. Is there an Entity Instantiation between these two sentences?",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Agreement Study",
                "sec_num": "3.1"
            },
            {
                "text": "The results of the agreement study, including percentage agreement and chance corrected agreement (Kappa, (Cohen, 1960) ), are presented in Table 1. Our agreement about which candidates were \"Not a mention\" was \u03ba = 0.7146. These agreement statistics show reasonable agreement on the task, and that our annotation scheme is reliable and replicable.",
                "cite_spans": [
                    {
                        "start": 106,
                        "end": 119,
                        "text": "(Cohen, 1960)",
                        "ref_id": "BIBREF7"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Agreement Study",
                "sec_num": "3.1"
            },
            {
                "text": "There were several re-occurring types of disagreements. It was often difficult for annotators to establish whether a pair of sets were subsets, coreferent or overlapping. In Example 8, one can interpret 'men' to mean either the men belonging to Baker or the general set of men, and this interpretation directly affects whether 'them' is considered a subset.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Agreement Study",
                "sec_num": "3.1"
            },
            {
                "text": "Another problematic issue was systematic polysemy. In Example 9, 'Most cosmetic purchases' might comprise a set of transactions or a set of products. The result of this interpretation then affects whether one considers 'lipstick' to be a set member.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Agreement Study",
                "sec_num": "3.1"
            },
            {
                "text": "We also found that disagreements often propagated. A single decision about the relationship between two entities early on in a text can result in a large number of follow-on disagreements.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Agreement Study",
                "sec_num": "3.1"
            },
            {
                "text": "(8) a. Baker had lots of men.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Agreement Study",
                "sec_num": "3.1"
            },
            {
                "text": "b. But she didn't trust them and didn't reward trust.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Agreement Study",
                "sec_num": "3.1"
            },
            {
                "text": "(9) a. Most cosmetic purchases are unplanned. b. Lipstick is often bought on a whim.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Agreement Study",
                "sec_num": "3.1"
            },
            {
                "text": "After the successful agreement study, a further 20 texts were annotated by the first author of this study in order to complete the corpus. The frequency of Entity Instantiations over the final 25 Table 2 . We found that a mean of 26 instantiations occurred per text, and that set membership instantiations occur considerably more frequently than subset instantiations.",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 196,
                        "end": 203,
                        "text": "Table 2",
                        "ref_id": "TABREF4"
                    }
                ],
                "eq_spans": [],
                "section": "Further Annotation",
                "sec_num": "3.2"
            },
            {
                "text": "We use a supervised machine learning approach to detect which NP pairs comprise Entity Instantiations. Below we detail our feature set, experimental set-up and results.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Automatic Instantiation Detection",
                "sec_num": "4"
            },
            {
                "text": "Our features fall into five broad categories; surface, salience, syntactic, contextual and knowledge. These categories contain both features that pertain to a single NP, and those that represent cross-NP relationships.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Features",
                "sec_num": "4.1"
            },
            {
                "text": "Surface features. Our surface features consist of unigrams, part-of-speech tags, lemmas, and dependency-parse 3 derived heads of each NP. We calculate Levenshtein's distance between the strings representing the unigrams, lemmas, head word and head lemma of each NP, hoping to capture pairs like 'funds' and 'fund' (see Example 1). We also calculate the distance in characters and words between NP pairs, and include these along with versions normalised by the total length of the two sentences containing the NPs. Additionally we include a boolean feature which represents the order of the NPs -True for candidate set NP in the first sentence and candidate set member/subset NP in the second sentence and False for the reverse order.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Features",
                "sec_num": "4.1"
            },
            {
                "text": "Salience features. As an indicator of the salience of each NP we include: its grammatical role, derived from dependency parse data; whether it is the first mention of that entity in the sentence or document; the number of mentions of the entity prior to this in the document; and the overall number of mentions of the entity in the document. We approximate the number of entity mentions by judging noun phrases with identical heads to be coreferent, as in (Barzilay and Lapata, 2008) .",
                "cite_spans": [
                    {
                        "start": 456,
                        "end": 483,
                        "text": "(Barzilay and Lapata, 2008)",
                        "ref_id": "BIBREF2"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Features",
                "sec_num": "4.1"
            },
            {
                "text": "Syntactic features. We include five syntactic features, representing syntactic parallelism and pre-and post-modification. The modification type includes values that represent apposition, conjunction, pre modification and bare nouns. Our intuition is that set members and subsets are often more heavily modified than the sets that they are part of, as in footballers \u2192 footballers playing in the Premiership, European countries \u2192 European nations that use the Euro.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Features",
                "sec_num": "4.1"
            },
            {
                "text": "Contextual features. We include several contextual features, hypothesising that NPs that occur in similar contexts may be more likely to be Entity Instantiations. We retrieve the Levin class (Levin, 1993) of each NP's head verb, as well as the verb itself, noting examples such as Example 1 which has two similar verbs, 'surge' and 'skyrocket'. We also calculate whether each NP is in a quotation, and include an approximation of the discourse relations present in the two sentences by identifying likely discourse connectives and mapping them to their most frequent explicit relation in the Penn Discourse Treebank (PDTB) (Prasad et al., 2008) . In cases such as Example 7, the presence of the discourse connective 'however' appears useful in establishing that no instantiation is present. Note that we do not use any PDTB annotations to discover the presence of implicit or explicit discourse relations in the two sentences.",
                "cite_spans": [
                    {
                        "start": 191,
                        "end": 204,
                        "text": "(Levin, 1993)",
                        "ref_id": "BIBREF16"
                    },
                    {
                        "start": 623,
                        "end": 644,
                        "text": "(Prasad et al., 2008)",
                        "ref_id": "BIBREF26"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Features",
                "sec_num": "4.1"
            },
            {
                "text": "Knowledge-based features. Our knowledgebased features are organised into four categories:",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Features",
                "sec_num": "4.1"
            },
            {
                "text": "WordNet. We use WordNet to establish whether the head words of NPs that are not named entities are synonyms or hyponyms, in an effort to identify pairs such as 'offers' and 'bids' in Example 2.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Features",
                "sec_num": "4.1"
            },
            {
                "text": "Freebase. We use Freebase (Bollacker et al., 2008) , a freely-available repository of structured knowledge, to attempt to establish the relatedness of NPs. Each entity in Freebase is associated with a list of topics, which loosely represent hyponyms of the entity. For example, the topics listed for 'Wayne Rooney' include ['Person','Football player','Athlete','2010 World Cup Athlete'] . For each NP representing a potential set member or subset, we search Freebase using their Search API, choosing those matching entities that have a relevance score over 35. We then retrieve a list of topics for each entity and compare these topics to our potential set NP. If one of the topics is equal to, synonymous with, or has a Levenshtein distance of 1 from our potential set, the feature is True. Otherwise the feature is False.",
                "cite_spans": [
                    {
                        "start": 26,
                        "end": 50,
                        "text": "(Bollacker et al., 2008)",
                        "ref_id": "BIBREF3"
                    },
                    {
                        "start": 323,
                        "end": 386,
                        "text": "['Person','Football player','Athlete','2010 World Cup Athlete']",
                        "ref_id": null
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Features",
                "sec_num": "4.1"
            },
            {
                "text": "Google PMI. We also use Google for discovering potential set membership and subset relations. We calculate Point-wise Mutual Information from hit counts for our potential Entity Instantiations, based on the notion that the pattern \"X and other Y \", where X is a potential set member or subset and Y is a potential set, indicates hyponymy (Hearst, 1992; Markert and Nissim, 2005) . We use the following formula to calculate the value of our feature: G-PMI(X, Y ) = hits(\"X and other Y \") hits(\"X\") \u00d7 hits(\"and other Y \") Animacy. We attempt to establish whether the animacy of the two NPs match, reasoning that pairs of NPs that do not have the same animacy are highly unlikely to participate in an Entity Instantiation.",
                "cite_spans": [
                    {
                        "start": 338,
                        "end": 352,
                        "text": "(Hearst, 1992;",
                        "ref_id": "BIBREF12"
                    },
                    {
                        "start": 353,
                        "end": 378,
                        "text": "Markert and Nissim, 2005)",
                        "ref_id": "BIBREF18"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Features",
                "sec_num": "4.1"
            },
            {
                "text": "We use a list of animate pronouns, lists of animate and inanimate words distributed as part of the Stanford Deterministic Coreference Resolution System (Ji and Lin, 2009; Lee et al., 2011) , and named entity information generated by the Stanford Named Entity Recognizer (Finkel et al., 2005) to ascertain the animacy of each NP. Our feature has three possible values; Match if the two NPs have the same animacy, No Match if they do not, and Not Present if we cannot calculate the animacy of one of the NPs. Not Present occurs in only 6% of pairs.",
                "cite_spans": [
                    {
                        "start": 152,
                        "end": 170,
                        "text": "(Ji and Lin, 2009;",
                        "ref_id": "BIBREF13"
                    },
                    {
                        "start": 171,
                        "end": 188,
                        "text": "Lee et al., 2011)",
                        "ref_id": "BIBREF15"
                    },
                    {
                        "start": 270,
                        "end": 291,
                        "text": "(Finkel et al., 2005)",
                        "ref_id": "BIBREF9"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Features",
                "sec_num": "4.1"
            },
            {
                "text": "We divide our data set into two; plural-plural NP pairs that are labelled either subset or noinstantiation and plural-singular NP pairs that are labelled either set member or no-instantiation. We use the machine learner ICSIBoost (Favre et al., 2007) . ICSIBoost is an open source implementation of Boostexter (Schapire and Singer, 2000) , an algorithm which combines simple 'rules-ofthumb' -in this case, decision stumps -to produce a classifier. We apply 10-fold crossvalidation for testing and training in all our experiments, keeping pairs from the same text in the same fold, to avoid rewarding the learning of very specific rules about the unigrams present which will not generalise well.",
                "cite_spans": [
                    {
                        "start": 230,
                        "end": 250,
                        "text": "(Favre et al., 2007)",
                        "ref_id": null
                    },
                    {
                        "start": 310,
                        "end": 337,
                        "text": "(Schapire and Singer, 2000)",
                        "ref_id": "BIBREF29"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Experimental Set-up and Results",
                "sec_num": "4.2"
            },
            {
                "text": "Due to the nature of the annotation study, there are many more pairs of candidates between which no Entity Instantiation has been annotated than those that have. Only 2.32% of the 28,966 pairs of candidates in the corpus have a set member or subset annotation. We therefore experiment with two different datasets.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Experimental Set-up and Results",
                "sec_num": "4.2"
            },
            {
                "text": "Firstly, we used random sub-sampling to produce a balanced data set in which only 50% of the annotated pairs were non-relations, and used this for both training and testing. Results on the subsampled data are shown in Table 3 .",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 218,
                        "end": 225,
                        "text": "Table 3",
                        "ref_id": "TABREF6"
                    }
                ],
                "eq_spans": [],
                "section": "Experimental Set-up and Results",
                "sec_num": "4.2"
            },
            {
                "text": "Secondly, we experimented with the original, highly skewed data. Training on the original data resulted in a classifier that almost never predicted an instantiation, so we experimented with some simple techniques to improve precision and recall. These comprised randomly subsampling the negative examples so that they made up 50% or 75% of the training data, and oversampling the positive examples in the training data by a factor of 10, 20 or 40. The results of these experiments are shown in Table 4 .",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 494,
                        "end": 501,
                        "text": "Table 4",
                        "ref_id": null
                    }
                ],
                "eq_spans": [],
                "section": "Experimental Set-up and Results",
                "sec_num": "4.2"
            },
            {
                "text": "For comparison, results for a baseline whose sole features are the unigrams of the two NPs are also included. The Precision, Recall and F-Measure scores shown are for the positive examples in each set.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Experimental Set-up and Results",
                "sec_num": "4.2"
            },
            {
                "text": "On a balanced data set, our best features show highly significant improvements over the unigram baseline 4 . We performed a feature ablation study, removing each group of features from our model in turn, the results of which are present in Table 3. Our knowledge-based features are particularly good for identifying instantiations. Upon further investigation, we discovered that our Google PMI feature is the most effective of this feature group, with large PMI values often being indicative of instantiations.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Discussion",
                "sec_num": "4.3"
            },
            {
                "text": "Our salience features aid classification significantly for set members but not subsets. This indicates that set members are often first mentions of an entity that are mediated from a set, but subsets function less often in this way. In general, sub- Table 4 : Results on unbalanced data set sets appear harder to detect than set membership relations, but the smaller size of the subset data set likely contributes to this.",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 250,
                        "end": 257,
                        "text": "Table 4",
                        "ref_id": null
                    }
                ],
                "eq_spans": [],
                "section": "Discussion",
                "sec_num": "4.3"
            },
            {
                "text": "Learning from the original, highly skewed data is much more difficult, and our highest F-scores are 0.1938 and 0.1414 for set members and subsets, respectively (see Table 4 ). Learning from data with this sort of distribution is difficult, regardless of the domain. In future we intend to use techniques such as SMOTE (Chawla et al., 2002) and One-Sided Selection (Kubat and Matwin, 1997) to address this heavy skew.",
                "cite_spans": [
                    {
                        "start": 318,
                        "end": 339,
                        "text": "(Chawla et al., 2002)",
                        "ref_id": "BIBREF5"
                    },
                    {
                        "start": 364,
                        "end": 388,
                        "text": "(Kubat and Matwin, 1997)",
                        "ref_id": "BIBREF14"
                    }
                ],
                "ref_spans": [
                    {
                        "start": 165,
                        "end": 172,
                        "text": "Table 4",
                        "ref_id": null
                    }
                ],
                "eq_spans": [],
                "section": "Discussion",
                "sec_num": "4.3"
            },
            {
                "text": "We propose a novel Information Extraction task: the detection of Entity Instantiations. This task is potentially important for a variety of NLP problems, such as question answering and sentiment analysis. We have presented the first corpus study of Entity Instantiations, achieving good levels of annotator agreement. Our supervised machine learning classifier achieves an F-score of 0.628 for set member relations and 0.586 for subset relations on a balanced set, making good use of a variety of features, including world-knowledge and salience criteria.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Conclusion and Future Work",
                "sec_num": "5"
            },
            {
                "text": "In the future, we intend to expand our annotation to include intrasentential and further dis-tant Entity Instantiations, as well as our current instantiations between adjacent sentences. Future machine learning approaches to consider are tree-kernel based approaches such as (Zhou et al., 2007) . To tackle the high skew in our data, we will use techniques such as those detailed in (Kubat and Matwin, 1997) and (Chawla et al., 2002) , and also look to methods such as active learning to acquire more positive instantiation examples.",
                "cite_spans": [
                    {
                        "start": 275,
                        "end": 294,
                        "text": "(Zhou et al., 2007)",
                        "ref_id": "BIBREF32"
                    },
                    {
                        "start": 383,
                        "end": 407,
                        "text": "(Kubat and Matwin, 1997)",
                        "ref_id": "BIBREF14"
                    },
                    {
                        "start": 412,
                        "end": 433,
                        "text": "(Chawla et al., 2002)",
                        "ref_id": "BIBREF5"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Conclusion and Future Work",
                "sec_num": "5"
            },
            {
                "text": "Our dependency parses are generated from the gold standard PTB tree.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "",
                "sec_num": null
            },
            {
                "text": "p < 10 \u2212 8 and 10 \u2212 4 for set members and subsets respectively with McNemar's \u03c7 2 test(McNemar, 1947).",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "",
                "sec_num": null
            }
        ],
        "back_matter": [
            {
                "text": "Andrew McKinlay is funded by an EPSRC Doctoral Training Grant. This research draws on data provided by the University Research Program for Google Search, a service provided by Google to promote a greater understanding of the web.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Acknowledgements",
                "sec_num": null
            }
        ],
        "bib_entries": {
            "BIBREF0": {
                "ref_id": "b0",
                "title": "Automatic Content Extraction",
                "authors": [],
                "year": 2000,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "ACE. 2000-2005. Automatic Content Extraction. http://www.ldc.upenn.edu/Projects/ ACE/.",
                "links": null
            },
            "BIBREF2": {
                "ref_id": "b2",
                "title": "Modeling local coherence: An entity-based approach",
                "authors": [
                    {
                        "first": "R",
                        "middle": [],
                        "last": "Barzilay",
                        "suffix": ""
                    },
                    {
                        "first": "M",
                        "middle": [],
                        "last": "Lapata",
                        "suffix": ""
                    }
                ],
                "year": 2008,
                "venue": "Computational Linguistics",
                "volume": "34",
                "issue": "1",
                "pages": "1--34",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "R. Barzilay and M. Lapata. 2008. Modeling local co- herence: An entity-based approach. Computational Linguistics, 34(1):1-34.",
                "links": null
            },
            "BIBREF3": {
                "ref_id": "b3",
                "title": "Freebase: a collaboratively created graph database for structuring human knowledge",
                "authors": [
                    {
                        "first": "K",
                        "middle": [],
                        "last": "Bollacker",
                        "suffix": ""
                    },
                    {
                        "first": "C",
                        "middle": [],
                        "last": "Evans",
                        "suffix": ""
                    },
                    {
                        "first": "P",
                        "middle": [],
                        "last": "Paritosh",
                        "suffix": ""
                    },
                    {
                        "first": "T",
                        "middle": [],
                        "last": "Sturge",
                        "suffix": ""
                    },
                    {
                        "first": "J",
                        "middle": [],
                        "last": "Taylor",
                        "suffix": ""
                    }
                ],
                "year": 2008,
                "venue": "Proceedings of the 2008 ACM SIGMOD International Conference on Management of Data",
                "volume": "",
                "issue": "",
                "pages": "1247--1250",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "K. Bollacker, C. Evans, P. Paritosh, T. Sturge, and J. Taylor. 2008. Freebase: a collaboratively cre- ated graph database for structuring human knowl- edge. In Proceedings of the 2008 ACM SIGMOD International Conference on Management of Data, pages 1247-1250.",
                "links": null
            },
            "BIBREF4": {
                "ref_id": "b4",
                "title": "Exploiting background knowledge for relation extraction",
                "authors": [
                    {
                        "first": "Y",
                        "middle": [
                            "S"
                        ],
                        "last": "Chan",
                        "suffix": ""
                    },
                    {
                        "first": "D",
                        "middle": [],
                        "last": "Roth",
                        "suffix": ""
                    }
                ],
                "year": 2010,
                "venue": "Proceedings of COLING 2010",
                "volume": "",
                "issue": "",
                "pages": "152--160",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Y.S. Chan and D. Roth. 2010. Exploiting background knowledge for relation extraction. In Proceedings of COLING 2010, pages 152-160.",
                "links": null
            },
            "BIBREF5": {
                "ref_id": "b5",
                "title": "Smote: synthetic minority oversampling technique",
                "authors": [
                    {
                        "first": "N",
                        "middle": [
                            "V"
                        ],
                        "last": "Chawla",
                        "suffix": ""
                    },
                    {
                        "first": "K",
                        "middle": [
                            "W"
                        ],
                        "last": "Bowyer",
                        "suffix": ""
                    },
                    {
                        "first": "L",
                        "middle": [
                            "O"
                        ],
                        "last": "Hall",
                        "suffix": ""
                    },
                    {
                        "first": "W",
                        "middle": [
                            "P"
                        ],
                        "last": "Kegelmeyer",
                        "suffix": ""
                    }
                ],
                "year": 2002,
                "venue": "Journal of Artificial Intelligence Research",
                "volume": "16",
                "issue": "1",
                "pages": "321--357",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "N.V. Chawla, K.W. Bowyer, L.O. Hall, and W.P. Kegelmeyer. 2002. Smote: synthetic minority over- sampling technique. Journal of Artificial Intelli- gence Research, 16(1):321-357.",
                "links": null
            },
            "BIBREF6": {
                "ref_id": "b6",
                "title": "Bridging",
                "authors": [
                    {
                        "first": "H",
                        "middle": [
                            "H"
                        ],
                        "last": "Clark",
                        "suffix": ""
                    }
                ],
                "year": 1975,
                "venue": "Proceedings of the 1975 Workshop on Theoretical Issues in Natural Language Processing",
                "volume": "",
                "issue": "",
                "pages": "169--174",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "H.H. Clark. 1975. Bridging. In Proceedings of the 1975 Workshop on Theoretical Issues in Natural Language Processing, pages 169-174.",
                "links": null
            },
            "BIBREF7": {
                "ref_id": "b7",
                "title": "A coefficient of agreement for nominal scales. Educational and psychological measurement",
                "authors": [
                    {
                        "first": "J",
                        "middle": [],
                        "last": "Cohen",
                        "suffix": ""
                    }
                ],
                "year": 1960,
                "venue": "",
                "volume": "20",
                "issue": "",
                "pages": "37--46",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "J. Cohen. 1960. A coefficient of agreement for nomi- nal scales. Educational and psychological measure- ment, 20(1):37-46.",
                "links": null
            },
            "BIBREF9": {
                "ref_id": "b9",
                "title": "Incorporating non-local information into information extraction systems by Gibbs sampling",
                "authors": [
                    {
                        "first": "J",
                        "middle": [
                            "R"
                        ],
                        "last": "Finkel",
                        "suffix": ""
                    },
                    {
                        "first": "T",
                        "middle": [],
                        "last": "Grenager",
                        "suffix": ""
                    },
                    {
                        "first": "C",
                        "middle": [],
                        "last": "Manning",
                        "suffix": ""
                    }
                ],
                "year": 2005,
                "venue": "Proceedings of ACL 2005",
                "volume": "",
                "issue": "",
                "pages": "363--370",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "J.R. Finkel, T. Grenager, and C. Manning. 2005. In- corporating non-local information into information extraction systems by Gibbs sampling. In Proceed- ings of ACL 2005, pages 363-370.",
                "links": null
            },
            "BIBREF10": {
                "ref_id": "b10",
                "title": "Definiteness and the processing of noun phrases in natural discourse",
                "authors": [
                    {
                        "first": "K",
                        "middle": [],
                        "last": "Fraurud",
                        "suffix": ""
                    }
                ],
                "year": 1990,
                "venue": "Journal of Semantics",
                "volume": "7",
                "issue": "4",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "K. Fraurud. 1990. Definiteness and the processing of noun phrases in natural discourse. Journal of Se- mantics, 7(4):395.",
                "links": null
            },
            "BIBREF11": {
                "ref_id": "b11",
                "title": "Which bridges for bridging definite descriptions",
                "authors": [
                    {
                        "first": "C",
                        "middle": [],
                        "last": "Gardent",
                        "suffix": ""
                    },
                    {
                        "first": "H",
                        "middle": [],
                        "last": "Manuelian",
                        "suffix": ""
                    },
                    {
                        "first": "E",
                        "middle": [],
                        "last": "Kow",
                        "suffix": ""
                    }
                ],
                "year": 2003,
                "venue": "Proceedings of the EACL 2003 Workshop on Linguistically Interpreted Corpora",
                "volume": "",
                "issue": "",
                "pages": "69--76",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "C. Gardent, H. Manuelian, and E. Kow. 2003. Which bridges for bridging definite descriptions. In Pro- ceedings of the EACL 2003 Workshop on Linguisti- cally Interpreted Corpora, pages 69-76.",
                "links": null
            },
            "BIBREF12": {
                "ref_id": "b12",
                "title": "Automatic acquisition of hyponyms from large text corpora",
                "authors": [
                    {
                        "first": "M",
                        "middle": [
                            "A"
                        ],
                        "last": "Hearst",
                        "suffix": ""
                    }
                ],
                "year": 1992,
                "venue": "Proceedings of COLING 1992",
                "volume": "",
                "issue": "",
                "pages": "539--545",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "M.A. Hearst. 1992. Automatic acquisition of hy- ponyms from large text corpora. In Proceedings of COLING 1992, pages 539-545.",
                "links": null
            },
            "BIBREF13": {
                "ref_id": "b13",
                "title": "Gender and animacy knowledge discovery from web-scale n-grams for unsupervised person mention detection",
                "authors": [
                    {
                        "first": "H",
                        "middle": [],
                        "last": "Ji",
                        "suffix": ""
                    },
                    {
                        "first": "D",
                        "middle": [],
                        "last": "Lin",
                        "suffix": ""
                    }
                ],
                "year": 2009,
                "venue": "Proceedings of PACLIC",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "H. Ji and D. Lin. 2009. Gender and animacy knowl- edge discovery from web-scale n-grams for unsuper- vised person mention detection. In Proceedings of PACLIC 2009.",
                "links": null
            },
            "BIBREF14": {
                "ref_id": "b14",
                "title": "Addressing the curse of imbalanced training sets: one-sided selection",
                "authors": [
                    {
                        "first": "M",
                        "middle": [],
                        "last": "Kubat",
                        "suffix": ""
                    },
                    {
                        "first": "S",
                        "middle": [],
                        "last": "Matwin",
                        "suffix": ""
                    }
                ],
                "year": 1997,
                "venue": "Proceedings of ICML 1997",
                "volume": "",
                "issue": "",
                "pages": "179--186",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "M. Kubat and S. Matwin. 1997. Addressing the curse of imbalanced training sets: one-sided selection. In Proceedings of ICML 1997, pages 179-186.",
                "links": null
            },
            "BIBREF15": {
                "ref_id": "b15",
                "title": "Stanfords multipass sieve coreference resolution system at the conll-2011 shared task",
                "authors": [
                    {
                        "first": "H",
                        "middle": [],
                        "last": "Lee",
                        "suffix": ""
                    },
                    {
                        "first": "Y",
                        "middle": [],
                        "last": "Peirsman",
                        "suffix": ""
                    },
                    {
                        "first": "A",
                        "middle": [],
                        "last": "Chang",
                        "suffix": ""
                    },
                    {
                        "first": "N",
                        "middle": [],
                        "last": "Chambers",
                        "suffix": ""
                    },
                    {
                        "first": "M",
                        "middle": [],
                        "last": "Surdeanu",
                        "suffix": ""
                    },
                    {
                        "first": "D",
                        "middle": [],
                        "last": "Jurafsky",
                        "suffix": ""
                    }
                ],
                "year": 2011,
                "venue": "Proceedings of the CoNLL-2011 Shared Task",
                "volume": "",
                "issue": "",
                "pages": "28--34",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "H. Lee, Y. Peirsman, A. Chang, N. Chambers, M. Sur- deanu, and D. Jurafsky. 2011. Stanfords multi- pass sieve coreference resolution system at the conll- 2011 shared task. In Proceedings of the CoNLL- 2011 Shared Task, pages 28-34.",
                "links": null
            },
            "BIBREF16": {
                "ref_id": "b16",
                "title": "English verb classes and alternations: A preliminary investigation",
                "authors": [
                    {
                        "first": "B",
                        "middle": [],
                        "last": "Levin",
                        "suffix": ""
                    }
                ],
                "year": 1993,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "B. Levin. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press.",
                "links": null
            },
            "BIBREF17": {
                "ref_id": "b17",
                "title": "Building a large annotated corpus of English: The Penn Treebank",
                "authors": [
                    {
                        "first": "M",
                        "middle": [
                            "P"
                        ],
                        "last": "Marcus",
                        "suffix": ""
                    },
                    {
                        "first": "M",
                        "middle": [
                            "A"
                        ],
                        "last": "Marcinkiewicz",
                        "suffix": ""
                    },
                    {
                        "first": "B",
                        "middle": [],
                        "last": "Santorini",
                        "suffix": ""
                    }
                ],
                "year": 1993,
                "venue": "Computational Linguistics",
                "volume": "19",
                "issue": "2",
                "pages": "313--330",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "M.P. Marcus, M.A. Marcinkiewicz, and B. Santorini. 1993. Building a large annotated corpus of En- glish: The Penn Treebank. Computational Linguis- tics, 19(2):313-330.",
                "links": null
            },
            "BIBREF18": {
                "ref_id": "b18",
                "title": "Comparing knowledge sources for nominal anaphora resolution",
                "authors": [
                    {
                        "first": "K",
                        "middle": [],
                        "last": "Markert",
                        "suffix": ""
                    },
                    {
                        "first": "M",
                        "middle": [],
                        "last": "Nissim",
                        "suffix": ""
                    }
                ],
                "year": 2005,
                "venue": "Computational Linguistics",
                "volume": "31",
                "issue": "3",
                "pages": "367--402",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "K. Markert and M. Nissim. 2005. Comparing knowl- edge sources for nominal anaphora resolution. Com- putational Linguistics, 31(3):367-402.",
                "links": null
            },
            "BIBREF19": {
                "ref_id": "b19",
                "title": "Inferential realization constraints on functional anaphora in the centering model",
                "authors": [
                    {
                        "first": "K",
                        "middle": [],
                        "last": "Markert",
                        "suffix": ""
                    },
                    {
                        "first": "M",
                        "middle": [],
                        "last": "Strube",
                        "suffix": ""
                    },
                    {
                        "first": "U",
                        "middle": [],
                        "last": "Hahn",
                        "suffix": ""
                    }
                ],
                "year": 1996,
                "venue": "Proceedings of CogSci",
                "volume": "",
                "issue": "",
                "pages": "609--614",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "K. Markert, M. Strube, and U. Hahn. 1996. Inferential realization constraints on functional anaphora in the centering model. In Proceedings of CogSci 1996, pages 609-614.",
                "links": null
            },
            "BIBREF20": {
                "ref_id": "b20",
                "title": "Using the web for nominal anaphora resolution",
                "authors": [
                    {
                        "first": "K",
                        "middle": [],
                        "last": "Markert",
                        "suffix": ""
                    },
                    {
                        "first": "N",
                        "middle": [],
                        "last": "Modjeska",
                        "suffix": ""
                    },
                    {
                        "first": "M",
                        "middle": [],
                        "last": "Nissim",
                        "suffix": ""
                    }
                ],
                "year": 2003,
                "venue": "Proceedings of EACL 2003 Workshop on the Computational Treatment of Anaphora",
                "volume": "",
                "issue": "",
                "pages": "39--46",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "K. Markert, N. Modjeska, and M. Nissim. 2003. Using the web for nominal anaphora resolution. In Pro- ceedings of EACL 2003 Workshop on the Computa- tional Treatment of Anaphora, pages 39-46.",
                "links": null
            },
            "BIBREF21": {
                "ref_id": "b21",
                "title": "Note on the sampling error of the difference between correlated proportions or percentages",
                "authors": [
                    {
                        "first": "Q",
                        "middle": [],
                        "last": "Mcnemar",
                        "suffix": ""
                    }
                ],
                "year": 1947,
                "venue": "Psychometrika",
                "volume": "12",
                "issue": "2",
                "pages": "153--157",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Q. McNemar. 1947. Note on the sampling error of the difference between correlated proportions or per- centages. Psychometrika, 12(2):153-157.",
                "links": null
            },
            "BIBREF24": {
                "ref_id": "b24",
                "title": "A corpus-based investigation of definite description use",
                "authors": [
                    {
                        "first": "M",
                        "middle": [],
                        "last": "Poesio",
                        "suffix": ""
                    },
                    {
                        "first": "R",
                        "middle": [],
                        "last": "Vieira",
                        "suffix": ""
                    }
                ],
                "year": 1998,
                "venue": "Computational Linguistics",
                "volume": "24",
                "issue": "",
                "pages": "183--216",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "M. Poesio and R. Vieira. 1998. A corpus-based inves- tigation of definite description use. Computational Linguistics, 24:183-216, June.",
                "links": null
            },
            "BIBREF25": {
                "ref_id": "b25",
                "title": "Learning to resolve bridging references",
                "authors": [
                    {
                        "first": "M",
                        "middle": [],
                        "last": "Poesio",
                        "suffix": ""
                    },
                    {
                        "first": "R",
                        "middle": [],
                        "last": "Mehta",
                        "suffix": ""
                    },
                    {
                        "first": "A",
                        "middle": [],
                        "last": "Maroudas",
                        "suffix": ""
                    },
                    {
                        "first": "J",
                        "middle": [],
                        "last": "Hitzeman",
                        "suffix": ""
                    }
                ],
                "year": 2004,
                "venue": "Proceedings of ACL 2004",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "M. Poesio, R. Mehta, A. Maroudas, and J. Hitzeman. 2004. Learning to resolve bridging references. In Proceedings of ACL 2004, page 143.",
                "links": null
            },
            "BIBREF26": {
                "ref_id": "b26",
                "title": "The Penn Discourse TreeBank 2.0",
                "authors": [
                    {
                        "first": "R",
                        "middle": [],
                        "last": "Prasad",
                        "suffix": ""
                    },
                    {
                        "first": "N",
                        "middle": [],
                        "last": "Dinesh",
                        "suffix": ""
                    },
                    {
                        "first": "A",
                        "middle": [],
                        "last": "Lee",
                        "suffix": ""
                    },
                    {
                        "first": "E",
                        "middle": [],
                        "last": "Miltsakaki",
                        "suffix": ""
                    },
                    {
                        "first": "L",
                        "middle": [],
                        "last": "Robaldo",
                        "suffix": ""
                    },
                    {
                        "first": "A",
                        "middle": [],
                        "last": "Joshi",
                        "suffix": ""
                    },
                    {
                        "first": "B",
                        "middle": [],
                        "last": "Webber",
                        "suffix": ""
                    }
                ],
                "year": 2008,
                "venue": "Proceedings of LREC 2008",
                "volume": "",
                "issue": "",
                "pages": "2961--2968",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "R. Prasad, N. Dinesh, A. Lee, E. Miltsakaki, L. Robaldo, A. Joshi, and B. Webber. 2008. The Penn Discourse TreeBank 2.0. In Proceedings of LREC 2008, pages 2961-2968.",
                "links": null
            },
            "BIBREF27": {
                "ref_id": "b27",
                "title": "Toward a Taxonomy of Given-New Information. Radical Pragmatics",
                "authors": [
                    {
                        "first": "E",
                        "middle": [
                            "F"
                        ],
                        "last": "Prince",
                        "suffix": ""
                    }
                ],
                "year": 1981,
                "venue": "",
                "volume": "3",
                "issue": "",
                "pages": "223--255",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "E.F. Prince. 1981. Toward a Taxonomy of Given-New Information. Radical Pragmatics, 3:223-255.",
                "links": null
            },
            "BIBREF28": {
                "ref_id": "b28",
                "title": "A typology of near-identity relations for coreference (NIDENT)",
                "authors": [
                    {
                        "first": "M",
                        "middle": [],
                        "last": "Recasens",
                        "suffix": ""
                    },
                    {
                        "first": "E",
                        "middle": [],
                        "last": "Hovy",
                        "suffix": ""
                    },
                    {
                        "first": "M",
                        "middle": [
                            "A"
                        ],
                        "last": "Mart\u0131",
                        "suffix": ""
                    }
                ],
                "year": 2010,
                "venue": "Proceedings of LREC 2010",
                "volume": "",
                "issue": "",
                "pages": "149--156",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "M. Recasens, E. Hovy, and M.A. Mart\u0131. 2010. A typology of near-identity relations for coreference (NIDENT). In Proceedings of LREC 2010, pages 149-156.",
                "links": null
            },
            "BIBREF29": {
                "ref_id": "b29",
                "title": "BoosTexter: A boosting-based system for text categorization. Machine learning",
                "authors": [
                    {
                        "first": "R",
                        "middle": [
                            "E"
                        ],
                        "last": "Schapire",
                        "suffix": ""
                    },
                    {
                        "first": "Y",
                        "middle": [],
                        "last": "Singer",
                        "suffix": ""
                    }
                ],
                "year": 2000,
                "venue": "",
                "volume": "39",
                "issue": "",
                "pages": "135--168",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "R.E. Schapire and Y. Singer. 2000. BoosTexter: A boosting-based system for text categorization. Ma- chine learning, 39(2):135-168.",
                "links": null
            },
            "BIBREF30": {
                "ref_id": "b30",
                "title": "Semisupervised relation extraction with large-scale word clustering",
                "authors": [
                    {
                        "first": "A",
                        "middle": [],
                        "last": "Sun",
                        "suffix": ""
                    },
                    {
                        "first": "R",
                        "middle": [],
                        "last": "Grishman",
                        "suffix": ""
                    },
                    {
                        "first": "S",
                        "middle": [],
                        "last": "Sekine",
                        "suffix": ""
                    }
                ],
                "year": 2011,
                "venue": "Proceedings of ACL-HLT 2011",
                "volume": "",
                "issue": "",
                "pages": "521--529",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "A. Sun, R. Grishman, and S. Sekine. 2011. Semi- supervised relation extraction with large-scale word clustering. In Proceedings of ACL-HLT 2011, pages 521-529.",
                "links": null
            },
            "BIBREF31": {
                "ref_id": "b31",
                "title": "An empirically based system for processing definite descriptions",
                "authors": [
                    {
                        "first": "R",
                        "middle": [],
                        "last": "Vieira",
                        "suffix": ""
                    },
                    {
                        "first": "M",
                        "middle": [],
                        "last": "Poesio",
                        "suffix": ""
                    }
                ],
                "year": 2000,
                "venue": "Computational Linguistics",
                "volume": "26",
                "issue": "4",
                "pages": "539--593",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "R. Vieira and M. Poesio. 2000. An empirically based system for processing definite descriptions. Compu- tational Linguistics, 26(4):539-593.",
                "links": null
            },
            "BIBREF32": {
                "ref_id": "b32",
                "title": "Tree Kernel-Based Relation Extraction with Context-Sensitive Structured Parse Tree Information",
                "authors": [
                    {
                        "first": "G",
                        "middle": [
                            "D"
                        ],
                        "last": "Zhou",
                        "suffix": ""
                    },
                    {
                        "first": "M",
                        "middle": [],
                        "last": "Zhang",
                        "suffix": ""
                    },
                    {
                        "first": "D",
                        "middle": [
                            "H"
                        ],
                        "last": "Ji",
                        "suffix": ""
                    },
                    {
                        "first": "Q",
                        "middle": [
                            "M"
                        ],
                        "last": "Zhu",
                        "suffix": ""
                    }
                ],
                "year": 2007,
                "venue": "Proceedings of EMNLP-CoNLL",
                "volume": "",
                "issue": "",
                "pages": "728--736",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "G.D. Zhou, M. Zhang, D.H. Ji, and Q.M. Zhu. 2007. Tree Kernel-Based Relation Extraction with Context-Sensitive Structured Parse Tree Informa- tion. In Proceedings of EMNLP-CoNLL 2007, pages 728-736.",
                "links": null
            }
        },
        "ref_entries": {
            "TABREF2": {
                "content": "<table><tr><td>: Agreement Statistics</td></tr><tr><td>2. Does this candidate set member/subset par-</td></tr><tr><td>ticipate in a set membership/subset relation-</td></tr><tr><td>ship with any potential set or not?</td></tr></table>",
                "text": "",
                "num": null,
                "type_str": "table",
                "html": null
            },
            "TABREF4": {
                "content": "<table/>",
                "text": "Frequency of Entity Instantiations in 25 texts texts is shown in",
                "num": null,
                "type_str": "table",
                "html": null
            },
            "TABREF6": {
                "content": "<table><tr><td/><td/><td colspan=\"2\">Set Members</td><td/><td/><td/><td>Subsets</td></tr><tr><td>Method</td><td colspan=\"2\">Accuracy P</td><td>R</td><td>F</td><td colspan=\"2\">Accuracy P</td><td>R</td><td>F</td></tr><tr><td>Original Set</td><td>97.39%</td><td colspan=\"4\">0.2979 0.0289 0.0527 97.90%</td><td colspan=\"2\">0.1852 0.0266 0.0465</td></tr><tr><td colspan=\"2\">Undersampling 50/50 83.31%</td><td colspan=\"4\">0.0782 0.5227 0.1361 76.47%</td><td colspan=\"2\">0.0453 0.5585 0.0839</td></tr><tr><td colspan=\"2\">Undersampling 75/25 94.60%</td><td colspan=\"4\">0.1275 0.1963 0.1546 93.28%</td><td colspan=\"2\">0.0838 0.2500 0.1255</td></tr><tr><td>Oversampling x10</td><td>96.89%</td><td colspan=\"4\">0.2500 0.1178 0.1601 97.47%</td><td colspan=\"2\">0.1685 0.0798 0.1083</td></tr><tr><td>Oversampling x20</td><td>96.38%</td><td colspan=\"4\">0.2129 0.1632 0.1848 97.21%</td><td colspan=\"2\">0.1557 0.1011 0.1226</td></tr><tr><td>Oversampling x40</td><td>95.24%</td><td colspan=\"4\">0.1690 0.2272 0.1938 96.51%</td><td colspan=\"2\">0.1346 0.1489 0.1414</td></tr></table>",
                "text": "Results on balanced data set \u2663 Algorithm with highest accuracy \u2660 Significantly worse than \u2663 , significance p < 0.005, McNemar's \u03c7 2 test. Significantly worse than \u2663 , significance p < 0.001, McNemar's \u03c7 2 test.",
                "num": null,
                "type_str": "table",
                "html": null
            }
        }
    }
}