File size: 82,663 Bytes
6fa4bc9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
{
    "paper_id": "R11-1032",
    "header": {
        "generated_with": "S2ORC 1.0.0",
        "date_generated": "2023-01-19T15:05:06.618478Z"
    },
    "title": "Improving WSD using ISR-WN with Relevant Semantic Trees and SemCor Senses Frequency",
    "authors": [
        {
            "first": "Yoan",
            "middle": [],
            "last": "Guti\u00e9rrez",
            "suffix": "",
            "affiliation": {
                "laboratory": "",
                "institution": "University of Matanzas",
                "location": {
                    "country": "Cuba"
                }
            },
            "email": "yoan.gutierrez@umcc.cu"
        },
        {
            "first": "Sonia",
            "middle": [],
            "last": "V\u00e1zquez",
            "suffix": "",
            "affiliation": {
                "laboratory": "",
                "institution": "University of Alicante",
                "location": {
                    "country": "Spain"
                }
            },
            "email": "svazquez@dlsi.ua.es"
        },
        {
            "first": "Andr\u00e9s",
            "middle": [],
            "last": "Montoyo",
            "suffix": "",
            "affiliation": {
                "laboratory": "",
                "institution": "University of Alicante",
                "location": {
                    "country": "Spain"
                }
            },
            "email": "montoyo@dlsi.ua.es"
        }
    ],
    "year": "",
    "venue": null,
    "identifiers": {},
    "abstract": "In this paper we concentrate on the resolution of the semantic ambiguity that arises when a given word has several meanings. This specific task is commonly referred to as Word Sense Disambiguation (WSD). We propose a method that obtains the appropriate senses from a multidimensional analysis (using Relevant Semantic Trees). Our method uses different resources WordNet, WordNet Domains, WordNet-Affects and SUMO, combined with senses frequency obtained from SemCor. Our hypothesis is that in WSD it is important to obtain the most frequent senses depending on the type of analyzed context to achieve better results. Finally, in order to evaluate and compare our results, it is presented a comprehensive study and experimental work using the Senseval-2 and Semeval-2 data set, demonstrating that our system obtains better results than other unsupervised systems.",
    "pdf_parse": {
        "paper_id": "R11-1032",
        "_pdf_hash": "",
        "abstract": [
            {
                "text": "In this paper we concentrate on the resolution of the semantic ambiguity that arises when a given word has several meanings. This specific task is commonly referred to as Word Sense Disambiguation (WSD). We propose a method that obtains the appropriate senses from a multidimensional analysis (using Relevant Semantic Trees). Our method uses different resources WordNet, WordNet Domains, WordNet-Affects and SUMO, combined with senses frequency obtained from SemCor. Our hypothesis is that in WSD it is important to obtain the most frequent senses depending on the type of analyzed context to achieve better results. Finally, in order to evaluate and compare our results, it is presented a comprehensive study and experimental work using the Senseval-2 and Semeval-2 data set, demonstrating that our system obtains better results than other unsupervised systems.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Abstract",
                "sec_num": null
            }
        ],
        "body_text": [
            {
                "text": "The main goal of knowledge technologies is to provide meaning to the huge quantity of information that our multilingual societies generate day to day. A wide range of advanced techniques are required to progressively automate the knowledge lifecycle. For that, after performing an analysis to large data collections it is necessary to develop different approaches to automatically represent and manage a high-level of meaningful concepts (Montoyo et al., 2005) . Moreover, to be able to create efficient systems of Natural Language Processing (NLP) it is necessary to turn the information extracted from words in plain text into a Concept Level or meaningful word senses. This representation allows to group words with similar meanings according to the context where they appear.",
                "cite_spans": [
                    {
                        "start": 438,
                        "end": 460,
                        "text": "(Montoyo et al., 2005)",
                        "ref_id": "BIBREF1"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "In order to determine the right meanings of words in different contexts WSD systems have been developed. Furthermore, it has been proved that applications such as Machine Translation, Information Extraction, Question Answering, Information Retrieval, Text Classification, and Text Summarization require knowledge about word meanings to obtain better results. So, WSD is considered an essential task for all these applications (Ide and V\u00e9ronis, 1998) . For this reason many research groups are working on WSD, using a wide range of approaches.",
                "cite_spans": [
                    {
                        "start": 426,
                        "end": 449,
                        "text": "(Ide and V\u00e9ronis, 1998)",
                        "ref_id": "BIBREF16"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "Due to the need of evaluating different approaches to show the improvements of NLP tasks it was created the Senseval 1 competition. The first Senseval was in 1998 at Herstmonceux Castle, Succex (England) and after that every three years a new competition takes place. In Senseval, different NLP tasks are defined in order to evaluate systems using the same repositories and corpus. At present, the results obtained in WSD have been going poorer, because the requirements of each corpus are getting more complex. For example, in Senseval-2 (Cotton et al., 2001) the best system obtained a 69% of accuracy in WSD, three years later in Senseval-3 (Snyder and Palmer, 2004) the best results were around 65.2% of accuracy, next in Semeval-1 (Pradhan et al., 2007) a 59.1% of accuracy was obtained and in Semeval-2 (Agirre et al., 2010) was 55.5%.",
                "cite_spans": [
                    {
                        "start": 539,
                        "end": 560,
                        "text": "(Cotton et al., 2001)",
                        "ref_id": "BIBREF19"
                    },
                    {
                        "start": 644,
                        "end": 669,
                        "text": "(Snyder and Palmer, 2004)",
                        "ref_id": "BIBREF5"
                    },
                    {
                        "start": 726,
                        "end": 758,
                        "text": "Semeval-1 (Pradhan et al., 2007)",
                        "ref_id": null
                    },
                    {
                        "start": 809,
                        "end": 830,
                        "text": "(Agirre et al., 2010)",
                        "ref_id": "BIBREF10"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "Due to the fact that the results are still very low in accuracy we want to go deeply in the resolution of semantic ambiguity. Firstly, we have studied the behavior of the baseline Most Frequent Sense (MFS) in each competition. This baseline has been placed among the top places of the rank; for example, in Senseval-2 a system applying this baseline could have been located on the 2 nd place with a 64.58% of accuracy (Preiss, 2006) . In Senseval-3 Denys Yuret of Koc University computed a 60.9% and for the same competition Bart Decadt of University of Antwerp provided a baseline of 62.4%, these results could have been located on 7 th and 5 th positions respectively (Snyder and Palmer, 2004) . In Semeval-1 the baseline was positioned on 9 th place of fourteen systems and for the Semeval-2 competition the MFS baseline was located on 6 th place. As we can see, this probabilistic procedure can obtain effective results on WSD task, but notice that it does not take into account context information.",
                "cite_spans": [
                    {
                        "start": 418,
                        "end": 432,
                        "text": "(Preiss, 2006)",
                        "ref_id": "BIBREF14"
                    },
                    {
                        "start": 670,
                        "end": 695,
                        "text": "(Snyder and Palmer, 2004)",
                        "ref_id": "BIBREF5"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "Taking into account these facts our hypothesis is that for WSD it is important to obtain the most frequent senses combined with contextual information.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "After these considerations, a new question arises: How will we be able to develop a procedure that uses the sense frequencies combined with a technique that takes into account the context information and improves the MFS results?",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "With the aim to answer this question and to demonstrate our hypothesis we present the following contributions:",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "\uf0b7 A method that combines MFS with a multidimensional analysis of the context. It uses several semantic resources combined with Relevant Semantic Trees. \uf0b7 An analysis of how the MFS influences on the Relevant Semantic Trees method. \uf0b7 An analysis of the behavior of Relevant Semantic Trees and Most Frequent Senses in each one of the semantic dimensions. \uf0b7 A voting process between MFS and the results of different semantic dimensions. \uf0b7 An exhaustive evaluation of the proposal. \uf0b7 A comparison between our results and the systems in the Senseval-2 and Semeval-2 competitions. In Section 2 we show some related works. Our approach is described in Section 3. The evaluations and analysis are provided in Section 4. Finally, we conclude in Section 5 adding further works. Among all of these resources, ISR-WN has the highest quantity of semantic dimensions aligned, so it is a suitable resource to run our proposal. Next, we present a brief description of ISR-WN.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "Integration of Semantic Resources based on WordNet (ISR-WN) (Guti\u00e9rrez et al., 2010b ) is a new resource that allows the integration of several semantic resources mapped to WN. In ISR-WN, WordNet is used as a core to link several resources such as: SUMO (Niles, 2001) , WordNet Domains (WND) (Magnini and Cavaglia, 2000) and WordNet Affect (WNA) (Strapparava and Valitutti, 2004) . As (Guti\u00e9rrez et al., 2010a) describe, the integrator resource provides a software capable to navigate inside the semantic network. In order to apply the multidimensionality that this resource provides, we have analyzed related NLP approaches that take into account semantic dimensionality. Addressed to context analysis we have studied (Magnini et al., 2008) , (V\u00e1zquez et al., 2004) and (Buscaldi et al., 2005) . In these works WSD is performed using the WND resource (domain dimension). (Zouaq et al., 2009) , (Villarejo et al., 2005) among others, conducted a semantic analysis using SUMO ontology (category dimension), and the Relevant Semantic Trees (RST) (Guti\u00e9rrez et al., 2010a) apply several dimensions at once.",
                "cite_spans": [
                    {
                        "start": 60,
                        "end": 84,
                        "text": "(Guti\u00e9rrez et al., 2010b",
                        "ref_id": "BIBREF22"
                    },
                    {
                        "start": 254,
                        "end": 267,
                        "text": "(Niles, 2001)",
                        "ref_id": "BIBREF12"
                    },
                    {
                        "start": 292,
                        "end": 320,
                        "text": "(Magnini and Cavaglia, 2000)",
                        "ref_id": "BIBREF3"
                    },
                    {
                        "start": 346,
                        "end": 379,
                        "text": "(Strapparava and Valitutti, 2004)",
                        "ref_id": "BIBREF7"
                    },
                    {
                        "start": 385,
                        "end": 410,
                        "text": "(Guti\u00e9rrez et al., 2010a)",
                        "ref_id": "BIBREF21"
                    },
                    {
                        "start": 719,
                        "end": 741,
                        "text": "(Magnini et al., 2008)",
                        "ref_id": "BIBREF4"
                    },
                    {
                        "start": 744,
                        "end": 766,
                        "text": "(V\u00e1zquez et al., 2004)",
                        "ref_id": "BIBREF20"
                    },
                    {
                        "start": 771,
                        "end": 794,
                        "text": "(Buscaldi et al., 2005)",
                        "ref_id": "BIBREF8"
                    },
                    {
                        "start": 872,
                        "end": 892,
                        "text": "(Zouaq et al., 2009)",
                        "ref_id": "BIBREF2"
                    },
                    {
                        "start": 895,
                        "end": 919,
                        "text": "(Villarejo et al., 2005)",
                        "ref_id": "BIBREF15"
                    },
                    {
                        "start": 1044,
                        "end": 1069,
                        "text": "(Guti\u00e9rrez et al., 2010a)",
                        "ref_id": "BIBREF21"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Integration of Semantic Resources based on WordNet (ISR-WN)",
                "sec_num": "2.1"
            },
            {
                "text": "Next, we present the RST method which is able to work with different resources based on WordNet.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Integration of Semantic Resources based on WordNet (ISR-WN)",
                "sec_num": "2.1"
            },
            {
                "text": "The RST method is able to find the correct senses of each word using Relevant Semantic Trees from different resources. This approach can be used with many resources mapped to WN as we have mentioned above.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Relevant Semantic Trees (RST)",
                "sec_num": "2.2"
            },
            {
                "text": "In order to measure the association between concepts according to a multidimensional perspective in each sentence, RST uses an Association Ratio (AR) modification based on the proposal presented by V\u00e1zquez et al. (2004) .",
                "cite_spans": [
                    {
                        "start": 198,
                        "end": 219,
                        "text": "V\u00e1zquez et al. (2004)",
                        "ref_id": "BIBREF20"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Relevant Semantic Trees (RST)",
                "sec_num": "2.2"
            },
            {
                "text": "We propose an unsupervised knowledge-based method that uses the original RST technique including senses frequency of SemCor 4 corpus and using a voting process to find the right senses. The voting process involves MFS (Most Frequent Sense), RST over WND, WNA, WN taxonomy and SUMO. Adding this new information we are able to improve the previous results obtained by the original RST and we also improve the MFS results in Semeval-2 competition. Specifically, we provide a sort of supervised aid (i.e. MFS) to the RST method of Guti\u00e9rrez et al.(2010a) Step 3. Voting process to obtain the final senses. Next, we present how these phases have been developed.",
                "cite_spans": [
                    {
                        "start": 527,
                        "end": 550,
                        "text": "Guti\u00e9rrez et al.(2010a)",
                        "ref_id": "BIBREF21"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "WSD Method",
                "sec_num": "3"
            },
            {
                "text": "In this section, we describe how we have used a fragment of the original RST method with the aim to obtain Relevant Semantic Trees from the sentences. Equation 1 is used to measure and obtain the values of Relevant Concepts:",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Obtaining the Relevant Semantic Trees",
                "sec_num": "3.1"
            },
            {
                "text": "(1) Where 2Where C is a concept; s is a sentence or a set of words (w); s i is the i-th word (w) of the sentence s; P(C, w) is joint probability distribution; and P(C) is marginal probability.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Obtaining the Relevant Semantic Trees",
                "sec_num": "3.1"
            },
            {
                "text": "The first stage is to Pre-process the sentence to obtain all lemmas. For instance, in the sentence \"But it is unfair to dump on teachers as distinct from the educational establishment.\" the lemmas are: [unfair, dump, teacher, distinct, educational, establishment Next, each lemma is searched through ISR-WN resource and it is correlated with concepts of WND (the dimension used in this example). Table 1 shows the results after applying Equation 1 over the sentence.",
                "cite_spans": [
                    {
                        "start": 202,
                        "end": 262,
                        "text": "[unfair, dump, teacher, distinct, educational, establishment",
                        "ref_id": null
                    }
                ],
                "ref_spans": [
                    {
                        "start": 396,
                        "end": 403,
                        "text": "Table 1",
                        "ref_id": null
                    }
                ],
                "eq_spans": [],
                "section": "Obtaining the Relevant Semantic Trees",
                "sec_num": "3.1"
            },
            {
                "text": "After obtaining the Initial Concept Vector of Domains we apply the Equation 3 in order to build the Relevant Semantic Tree related to the sentence.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Obtaining the Relevant Semantic Trees",
                "sec_num": "3.1"
            },
            {
                "text": "; 3Where:",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Obtaining the Relevant Semantic Trees",
                "sec_num": "3.1"
            },
            {
                "text": "; 4Where AR(PC, s) represents the AR value of PC related to the sentence s;",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Obtaining the Relevant Semantic Trees",
                "sec_num": "3.1"
            },
            {
                "text": "is the AR value calculated with Equation 1 in case of Child Concept (ChC) was included in the Initial Vector, otherwise is calculated with the Equation 3; ND is a Normalized Distance; IC is the Initial Concept from we have to add the ancestors; PC is Parent Concept; TD is Depth of the hierarchic tree of the resource to use; and MP is Minimal Path.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Obtaining the Relevant Semantic Trees",
                "sec_num": "3.1"
            },
            {
                "text": "Applying the Equation 3, the algorithm to decide which parent concept will be added to the vector is shown here: Figure 1 shows. As we can see, the Relevant Semantic Tree of domains in Figure 1 has associated a color intensity related to the AR value of each domain. The more intense the color is the more related AR is. (Magnini and Cavaglia, 2000) . Moreover, after conducting several experiments we have confirmed that it introduced errors.",
                "cite_spans": [
                    {
                        "start": 321,
                        "end": 349,
                        "text": "(Magnini and Cavaglia, 2000)",
                        "ref_id": "BIBREF3"
                    }
                ],
                "ref_spans": [
                    {
                        "start": 113,
                        "end": 121,
                        "text": "Figure 1",
                        "ref_id": null
                    },
                    {
                        "start": 185,
                        "end": 193,
                        "text": "Figure 1",
                        "ref_id": null
                    }
                ],
                "eq_spans": [],
                "section": "Obtaining the Relevant Semantic Trees",
                "sec_num": "3.1"
            },
            {
                "text": "EQUATION",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [
                    {
                        "start": 0,
                        "end": 8,
                        "text": "EQUATION",
                        "ref_id": "EQREF",
                        "raw_str": "if (",
                        "eq_num": "> 0"
                    }
                ],
                "section": "Obtaining the Relevant Semantic Trees",
                "sec_num": "3.1"
            },
            {
                "text": "To select the correct senses, three steps are applied:",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Selecting the correct senses",
                "sec_num": "3.2"
            },
            {
                "text": "Step 1. Obtaining the RST from candidate senses In this step we associate to each possible sense of each lemma a RST based on each semantic dimension. At this stage the aim of RST is to measure the relation between each Concept and each sense. To do this we use the Equation 2 where we have substituted the variable w (word) with the variable sw i , (sense) where sw i indicates the i-th sense of word w. As a result, we convert each RST in a vector. Next, we continue with the complete process adding the parent concepts.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Selecting the correct senses",
                "sec_num": "3.2"
            },
            {
                "text": "To measure the similarity between the RST of the sentences and senses, we have applied a fragment of the original method from (Guti\u00e9rrez et al., 2010a) introducing sense frequency ( ) as a new modification. Our goal is to obtain a new value to measure the Most Frequent Sense (MFS) in a given context. The AR value is accumulated when a matching exists between the vector elements of the sense and the vector elements of the sentence. The process is shown in the Equation 5.",
                "cite_spans": [
                    {
                        "start": 126,
                        "end": 151,
                        "text": "(Guti\u00e9rrez et al., 2010a)",
                        "ref_id": "BIBREF21"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Step 2. Obtaining accumulated values of relevance for each resource and frequency sense",
                "sec_num": null
            },
            {
                "text": "(",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": ";",
                "sec_num": null
            },
            {
                "text": "Where AC is the AR value accumulated for the analyzed elements; ARV is the vector of relevant concepts of the sentence with the format: AC is calculated for each RST (or Relevant Vector) of each semantic dimension. In this approach we have obtained four AC values (for WN taxonomy, WND, WNA and SUMO).",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": ";",
                "sec_num": null
            },
            {
                "text": "ARV[concept1 | AR",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": ";",
                "sec_num": null
            },
            {
                "text": "Notice that once we have obtained AC values for each sense in each dimension, if the senses calculated do not match with the grammatical category that Freeling (Atserias et al., 2006) suggests, we discriminate these senses adding a zero value to AC; in other case we add a one value. Adding these values we can maintain all the candidates in the solution despite the grammatical category is wrong.",
                "cite_spans": [
                    {
                        "start": 160,
                        "end": 183,
                        "text": "(Atserias et al., 2006)",
                        "ref_id": "BIBREF13"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": ";",
                "sec_num": null
            },
            {
                "text": "Finally, the proposed sense will have the highest AC value among all senses in each lemma.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": ";",
                "sec_num": null
            },
            {
                "text": "Step",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": ";",
                "sec_num": null
            },
            {
                "text": "As we have explained above, each semantic dimension provides a possible sense. It is important to remark that the sense frequency is also included as a semantic dimension. So, in order to decide the right sense among the different semantic dimensions sense proposals we use a voting process. To apply this idea we define the next equation:",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Voting process to obtain the final senses",
                "sec_num": "3."
            },
            {
                "text": "; (6)",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Voting process to obtain the final senses",
                "sec_num": "3."
            },
            {
                "text": "Where VAC corresponds to a vector composed by AC values of each sense for one lemma; V [VAC] is a vector of the VAC; k corresponds to each resource; : corresponds to k-th VAC for resource k;",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Voting process to obtain the final senses",
                "sec_num": "3."
            },
            {
                "text": ": determines the sense with maximum AC value of each VAC; i: is i-th sense;",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Voting process to obtain the final senses",
                "sec_num": "3."
            },
            {
                "text": ": determines the sense that was selected more times by max k among all resources; and Ps: indicates proposed sense.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Voting process to obtain the final senses",
                "sec_num": "3."
            },
            {
                "text": "The obtain a tie or disjoin senses, the proposed sense will be the most frequent. We have chosen this option because of empirical studies have demonstrated that MFS works better than others (Molina et al., 2002) .",
                "cite_spans": [
                    {
                        "start": 190,
                        "end": 211,
                        "text": "(Molina et al., 2002)",
                        "ref_id": "BIBREF0"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Voting process to obtain the final senses",
                "sec_num": "3."
            },
            {
                "text": "In this section our purpose is to confirm the hypothesis presented in Section 1. We have evaluated this method with two different test corpus, Senseval-2 on \"English All words\" task and Semeval-2 on \"English All words on Specific Domain\" task. Moreover, we have compared our results with the participating systems of the aforementioned competitions. The goal of these experiments is to demonstrate how the sense frequencies combined with RST can improve the original RST results.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Evaluations and Analysis",
                "sec_num": "4"
            },
            {
                "text": "First, we analyzed how the addition of the sense frequencies to accumulated value (AC) of each sense improved the results of the previous work published on (Guti\u00e9rrez et al., 2010a) . To do this we used as test corpus the file d00.txt and we conducted some experiments: \uf0b7 Exp 1: Adding to AC value a 0% of Freq s . \uf0b7 Exp 2: Adding to AC value a 50% of Freq s . \uf0b7 Exp 3: Adding to AC value a 100% of Freq s . In the original method the authors calculated an accumulated value for each resource and summed up all the values to obtain the total accumulated value to combine all resources. In this new approach we also add the Freq s to the total accumulated value. Table 3 shows how each experiment obtains better results when Sense Frequencies (Freq s ) parameter is increased. Notice that we do not keep increasing this weight (i.e. 150%, 200%, etc) because the proposal would become converted only in selection process of MFS.",
                "cite_spans": [
                    {
                        "start": 156,
                        "end": 181,
                        "text": "(Guti\u00e9rrez et al., 2010a)",
                        "ref_id": "BIBREF21"
                    }
                ],
                "ref_spans": [
                    {
                        "start": 662,
                        "end": 669,
                        "text": "Table 3",
                        "ref_id": "TABREF7"
                    }
                ],
                "eq_spans": [],
                "section": "Evaluation with Senseval-2 corpus",
                "sec_num": "4.1"
            },
            {
                "text": "In order to determine whether the Freq s enhances the Most Frequent Senses (MFS) baseline, we conducted new experiments.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Evaluation with Senseval-2 corpus",
                "sec_num": "4.1"
            },
            {
                "text": "Next, we show how we have used the original method adding to AC the 100% of Freq s but only using one dimension at the same time:",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Evaluation with Senseval-2 corpus",
                "sec_num": "4.1"
            },
            {
                "text": "\uf0b7 Exp4: Using MFS using Freq s \uf0b7 Exp5: Using WND resource \uf0b7 Exp6: Using SUMO resource \uf0b7 Exp7: Using WNA resource \uf0b7 Exp8: Using WN Taxonomy resource",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Evaluation with Senseval-2 corpus",
                "sec_num": "4.1"
            },
            {
                "text": "After doing these experiments we were able to determine which dimension worked better. As we can see on Table 3 , these five experiments obtained promising results.",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 104,
                        "end": 111,
                        "text": "Table 3",
                        "ref_id": "TABREF7"
                    }
                ],
                "eq_spans": [],
                "section": "Evaluation with Senseval-2 corpus",
                "sec_num": "4.1"
            },
            {
                "text": "Another experiment was to combine these five experiments in a voting process to obtain even better results. This idea has led us to make our main proposal.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Evaluation with Senseval-2 corpus",
                "sec_num": "4.1"
            },
            {
                "text": "\uf0b7 Exp9: Applying a voting process among Exp4, Exp5, Exp6, Exp7 and Exp8 results Table 3 shows all the results obtained from d00.txt file of Senseval-2. The result of MFS is underlined and the approach that exceeded it is in bold. We can see that the voting process (Exp9) obtained the best results. Following, we present the results after analyzing the entire corpus of the Senseval-2 competition. For that, we applied two experiments to the entire corpus.",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 80,
                        "end": 87,
                        "text": "Table 3",
                        "ref_id": "TABREF7"
                    }
                ],
                "eq_spans": [],
                "section": "Evaluation with Senseval-2 corpus",
                "sec_num": "4.1"
            },
            {
                "text": "\uf0b7 Exp10: Applying WSD with MFS of Freq s \uf0b7 Exp11: Applying a voting process using the five dimensions We show in Table 4 a comparison among the results of the best performances of our voting process, MFS using Freq s and MFS obtained by (Preiss, 2006) . The baseline used by Preiss was based on cntlist file from WN 1.7 version and our Exp10 was based on cntlist from WN 1.6. Notice, that are different although both are based on frequency information. As we can see, our approach improves the Exp10 results. These results were obtained by our system, but the baseline MFS results obtained by Preiss were better than ours. This means that we could enhance the MFS that we use. So, we need to integrate in our approach a better MFS resource to obtain better results. Table 4 shows that our proposal would have the best results of all unsupervised methods.",
                "cite_spans": [
                    {
                        "start": 237,
                        "end": 251,
                        "text": "(Preiss, 2006)",
                        "ref_id": "BIBREF14"
                    }
                ],
                "ref_spans": [
                    {
                        "start": 113,
                        "end": 120,
                        "text": "Table 4",
                        "ref_id": null
                    },
                    {
                        "start": 766,
                        "end": 773,
                        "text": "Table 4",
                        "ref_id": null
                    }
                ],
                "eq_spans": [],
                "section": "Evaluation with Senseval-2 corpus",
                "sec_num": "4.1"
            },
            {
                "text": "Our approach was also evaluated using corpus from Semeval-2 competition. The voting process obtained 52.7% and 51.5% of precision and recall respectively, improving the MFS baseline with 1% of accuracy. The original method from (Guti\u00e9rrez et al., 2010a) was improved on 19.3% of accuracy such as Table 5 shows. The underlined results pertain to original method from (Guti\u00e9rrez et al., 2010a) and the bold results pertain to our approach. As a result, we can see that we can improve the MFS proposal from Semeval-2 competition.",
                "cite_spans": [
                    {
                        "start": 228,
                        "end": 253,
                        "text": "(Guti\u00e9rrez et al., 2010a)",
                        "ref_id": "BIBREF21"
                    },
                    {
                        "start": 366,
                        "end": 391,
                        "text": "(Guti\u00e9rrez et al., 2010a)",
                        "ref_id": "BIBREF21"
                    }
                ],
                "ref_spans": [
                    {
                        "start": 296,
                        "end": 303,
                        "text": "Table 5",
                        "ref_id": null
                    }
                ],
                "eq_spans": [],
                "section": "Evaluation with Semeval-2 corpus",
                "sec_num": "4.2"
            },
            {
                "text": "In this competition only were evaluated nouns and verbs. The behavior of our approach for each category was: nouns 54.4% of precision and 53.7% of recall, and verbs 49.4% of precision and 45.4% of recall. Each category is effective in comparison with the best results obtained on this competition.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Evaluation with Semeval-2 corpus",
                "sec_num": "4.2"
            },
            {
                "text": "In order to determine if the annotation of grammatical categories influences on the results, we discovered that the Freeling tool introduced a noise of 2.62% when detecting nouns and for verbs 8.20%. These analyses indicate that the results would be better using another more accurate tool.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Evaluation with Semeval-2 corpus",
                "sec_num": "4.2"
            },
            {
                "text": "In this section we present a comparison with some relevant WSD methods. We can mention those approaches using page-rank such as (Sinha and Mihalcea, 2007) , and (Agirre and Soroa, 2009 ). These proposals were tested using \"English All Words\" task corpus from Senseval-2. In both proposals, Page-Rank method has been used to determine the centrality of structural lexical network using the semantic relations of WordNet. Then, to disambiguate each word the most weighted sense was chosen. These approaches obtained 58.6% and 56.37% of recall respectively. Other significant work is the ACL 2004 paper by (Mc.Carthy et al., 2004) where the most frequent senses were obtained from a variety of resources (Reuters Corpus and SemCor Corpus), some of which provide domain information. This proposal obtained a 64% of precision in all-nouns task; this is just 3% higher than our results. However, we achieved better results than Mihalcea and Agirre exceeding them around 5%. This improvement could seem very poor but talking about WSD is a great step forward.",
                "cite_spans": [
                    {
                        "start": 128,
                        "end": 154,
                        "text": "(Sinha and Mihalcea, 2007)",
                        "ref_id": "BIBREF17"
                    },
                    {
                        "start": 161,
                        "end": 184,
                        "text": "(Agirre and Soroa, 2009",
                        "ref_id": "BIBREF11"
                    },
                    {
                        "start": 603,
                        "end": 627,
                        "text": "(Mc.Carthy et al., 2004)",
                        "ref_id": "BIBREF9"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Comparison with newer works",
                "sec_num": "4.3"
            },
            {
                "text": "In this paper we have presented the hypothesis that for word-sense disambiguation it is important to obtain the Most Frequent Senses depending on the kind of analyzed context. In order to demonstrate this hypothesis, we have studied how several semantic dimensions combined with sense frequencies could improve the obtained results of many approaches that only conducted the WSD analysis with one dimension. We have proposed an adaptation of an unsupervised knowledge-based method that combines the original Relevant Semantic Trees method with senses frequency in a voting process. As a result, we have been able to determine which percentage of sense frequency is needed to help the Relevant Semantic Trees method. Therefore, we have demonstrated that the WSD results are better when more percentage of sense frequency is added.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Conclusions and further works",
                "sec_num": "5"
            },
            {
                "text": "Moreover, we have conducted different experiments in order to know which semantic dimensions achieve better results. These experiments demonstrated that the Domain dimension (WND) and WordNet dimension (WN Taxonomy) worked better than MFS (Frequency dimension). Also, a voting process has been applied among all dimensions obtaining in Senseval-2 an of 60.9% and achieving the best results of all unsupervised systems. Furthermore, related to Semeval-2 our approach has improved the baseline MFS and the original RST method.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Conclusions and further works",
                "sec_num": "5"
            },
            {
                "text": "As further work we propose to use other resources on the voting process in order to add more dimensions and also, use a better frequency resource. Apart from that, we also have considered to use another grammatical categorizer, in order to reduce the noise introduced by misclassifying words.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Conclusions and further works",
                "sec_num": "5"
            },
            {
                "text": "Valenciana (grant no. PROMETEO/2009/119, ACOMP/2010/288 and ACOMP/2011/001).",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Conclusions and further works",
                "sec_num": "5"
            },
            {
                "text": "http://www.senseval.org",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "",
                "sec_num": null
            },
            {
                "text": "http://multiwordnet.fbk.eu/ 3 http://www.lsi.upc.es/~nlp/meaning/meaning.html",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "",
                "sec_num": null
            },
            {
                "text": "http://www.cse.unt.edu/~rada/downloads.html#semcor",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "",
                "sec_num": null
            }
        ],
        "back_matter": [
            {
                "text": "This paper has been supported partially by Ministerio de Ciencia e Innovaci\u00f3n -Spanish Government (grant no. TIN2009-13391-C04-01), and Conselleria d'Educaci\u00f3n -Generalitat",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Acknowledgements",
                "sec_num": null
            }
        ],
        "bib_entries": {
            "BIBREF0": {
                "ref_id": "b0",
                "title": "Word Sense Disambiguation using Statistical Models and WordNet",
                "authors": [
                    {
                        "first": "Antonio",
                        "middle": [],
                        "last": "Molina",
                        "suffix": ""
                    },
                    {
                        "first": "Ferran",
                        "middle": [],
                        "last": "Pla",
                        "suffix": ""
                    },
                    {
                        "first": "Encarna",
                        "middle": [],
                        "last": "Segarra",
                        "suffix": ""
                    },
                    {
                        "first": "Lidia",
                        "middle": [],
                        "last": "Moreno",
                        "suffix": ""
                    }
                ],
                "year": 2002,
                "venue": "Proceedings of 3rd International Conference on Language Resources and Evaluation",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Antonio Molina, Ferran Pla, Encarna Segarra and Lidia Moreno. 2002. Word Sense Disambiguation using Statistical Models and WordNet. Proceedings of 3rd International Conference on Language Resources and Evaluation: Las Palmas de Gran Canaria.",
                "links": null
            },
            "BIBREF1": {
                "ref_id": "b1",
                "title": "Combining Knowledge-and Corpus-based Word-Sense-Disambiguation Methods",
                "authors": [
                    {
                        "first": "Andr\u00e9s",
                        "middle": [],
                        "last": "Montoyo",
                        "suffix": ""
                    },
                    {
                        "first": "Armando",
                        "middle": [],
                        "last": "Su\u00e1rez",
                        "suffix": ""
                    },
                    {
                        "first": "German",
                        "middle": [],
                        "last": "Rigau",
                        "suffix": ""
                    },
                    {
                        "first": "Manuel",
                        "middle": [],
                        "last": "Palomar",
                        "suffix": ""
                    }
                ],
                "year": 2005,
                "venue": "Journal of Artificial Intelligence",
                "volume": "23",
                "issue": "",
                "pages": "299--330",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Andr\u00e9s Montoyo, Armando Su\u00e1rez, German Rigau and Manuel Palomar. 2005. Combining Knowledge-and Corpus-based Word-Sense- Disambiguation Methods. Journal of Artificial Intelligence, 23:299-330.",
                "links": null
            },
            "BIBREF2": {
                "ref_id": "b2",
                "title": "A SUMO-based Semantic Analysis for Knowledge Extraction",
                "authors": [
                    {
                        "first": "Amal",
                        "middle": [],
                        "last": "Zouaq",
                        "suffix": ""
                    },
                    {
                        "first": "Michel",
                        "middle": [],
                        "last": "Gagnon",
                        "suffix": ""
                    },
                    {
                        "first": "Benoit",
                        "middle": [],
                        "last": "Ozell",
                        "suffix": ""
                    }
                ],
                "year": 2009,
                "venue": "Proceedings of the 4th Language & Technology Conference",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Amal Zouaq, Michel Gagnon and Benoit Ozell. 2009. A SUMO-based Semantic Analysis for Knowledge Extraction. Proceedings of the 4th Language & Technology Conference: Pozna\u0144, Poland.",
                "links": null
            },
            "BIBREF3": {
                "ref_id": "b3",
                "title": "Integrating Subject Field Codes into WordNet",
                "authors": [
                    {
                        "first": "Bernardo",
                        "middle": [],
                        "last": "Magnini",
                        "suffix": ""
                    },
                    {
                        "first": "Gabriela",
                        "middle": [],
                        "last": "Cavaglia",
                        "suffix": ""
                    }
                ],
                "year": 2000,
                "venue": "Proceedings of Third International Conference on Language Resources and Evaluation (LREC-2000",
                "volume": "",
                "issue": "",
                "pages": "1413--1418",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Bernardo Magnini and Gabriela Cavaglia. 2000. Integrating Subject Field Codes into WordNet. Proceedings of Third International Conference on Language Resources and Evaluation (LREC-2000): 1413--1418.",
                "links": null
            },
            "BIBREF4": {
                "ref_id": "b4",
                "title": "Using Domain Information for Word Sense Disambiguation",
                "authors": [
                    {
                        "first": "Bernardo",
                        "middle": [],
                        "last": "Magnini",
                        "suffix": ""
                    },
                    {
                        "first": "Carlo",
                        "middle": [],
                        "last": "Strapparava",
                        "suffix": ""
                    },
                    {
                        "first": "Giovanni",
                        "middle": [],
                        "last": "Pezzulo",
                        "suffix": ""
                    },
                    {
                        "first": "Alfio",
                        "middle": [],
                        "last": "Gliozzo",
                        "suffix": ""
                    }
                ],
                "year": 2008,
                "venue": "Proceedings of the First International Conference on Emerging Trends in Engineering and Technology",
                "volume": "",
                "issue": "",
                "pages": "1187--1191",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Bernardo Magnini, Carlo Strapparava, Giovanni Pezzulo and Alfio Gliozzo. 2008. Using Domain Information for Word Sense Disambiguation. Proceedings of the First International Conference on Emerging Trends in Engineering and Technology (icetet 2008): 1187-1191. Nagpur, India.",
                "links": null
            },
            "BIBREF5": {
                "ref_id": "b5",
                "title": "SENSEVAL-3: Third International Workshop on the evaluation of System of the Semantic Analysis of Text",
                "authors": [
                    {
                        "first": "Benjamin",
                        "middle": [],
                        "last": "Snyder",
                        "suffix": ""
                    },
                    {
                        "first": "Martha",
                        "middle": [],
                        "last": "Palmer",
                        "suffix": ""
                    }
                ],
                "year": 2004,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Benjamin Snyder and Martha Palmer. 2004. The English All Word Task. SENSEVAL-3: Third International Workshop on the evaluation of System of the Semantic Analysis of Text: Barcelona, Spain.",
                "links": null
            },
            "BIBREF6": {
                "ref_id": "b6",
                "title": "WordNet. An Electronic Lexical Database",
                "authors": [
                    {
                        "first": "Christiane",
                        "middle": [],
                        "last": "Fellbaum",
                        "suffix": ""
                    }
                ],
                "year": 1998,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Christiane Fellbaum. 1998. WordNet. An Electronic Lexical Database. The MIT Press: University of Cambridge.",
                "links": null
            },
            "BIBREF7": {
                "ref_id": "b7",
                "title": "WordNet-Affect: an affective extension of WordNet",
                "authors": [
                    {
                        "first": "Carlo",
                        "middle": [],
                        "last": "Strapparava",
                        "suffix": ""
                    },
                    {
                        "first": "Alessandro",
                        "middle": [],
                        "last": "Valitutti",
                        "suffix": ""
                    }
                ],
                "year": 2004,
                "venue": "Proceedings of the 4th International Conference on Language Resources and Evaluation (LREC",
                "volume": "",
                "issue": "",
                "pages": "1083--1086",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Carlo Strapparava and Alessandro Valitutti. 2004. WordNet-Affect: an affective extension of WordNet. Proceedings of the 4th International Conference on Language Resources and Evaluation (LREC 2004): 1083-1086. Lisbon.",
                "links": null
            },
            "BIBREF8": {
                "ref_id": "b8",
                "title": "Integrating Conceptual Density with WordNet Domains and CALD Glosses for Noun Sense Disambiguation",
                "authors": [
                    {
                        "first": "Davide",
                        "middle": [],
                        "last": "Buscaldi",
                        "suffix": ""
                    },
                    {
                        "first": "Paolo",
                        "middle": [],
                        "last": "Rosso",
                        "suffix": ""
                    },
                    {
                        "first": "Francesco",
                        "middle": [],
                        "last": "Masulli",
                        "suffix": ""
                    }
                ],
                "year": 2005,
                "venue": "Proceedings of Espa\u00f1a for Natural Language Processing",
                "volume": "",
                "issue": "",
                "pages": "267--276",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Davide Buscaldi, Paolo Rosso and Francesco Masulli. 2005. Integrating Conceptual Density with WordNet Domains and CALD Glosses for Noun Sense Disambiguation. Proceedings of Espa\u00f1a for Natural Language Processing (ESTAL-2005): 267- 276. Alicante, Spain.",
                "links": null
            },
            "BIBREF9": {
                "ref_id": "b9",
                "title": "Finding Predominant Word Senses in Untagged Text",
                "authors": [
                    {
                        "first": "Diana",
                        "middle": [],
                        "last": "Mc",
                        "suffix": ""
                    },
                    {
                        "first": "Rob",
                        "middle": [],
                        "last": "Carthy",
                        "suffix": ""
                    },
                    {
                        "first": "Julie",
                        "middle": [],
                        "last": "Koeling",
                        "suffix": ""
                    },
                    {
                        "first": "John",
                        "middle": [],
                        "last": "Weeds",
                        "suffix": ""
                    },
                    {
                        "first": "",
                        "middle": [],
                        "last": "Carroll",
                        "suffix": ""
                    }
                ],
                "year": 2004,
                "venue": "Proceedings of the 42nd Meeting of the Association for Computational Linguistics (ACL'04",
                "volume": "",
                "issue": "",
                "pages": "279--286",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Diana Mc.Carthy, Rob Koeling, Julie Weeds and John Carroll. 2004. Finding Predominant Word Senses in Untagged Text. Proceedings of the 42nd Meeting of the Association for Computational Linguistics (ACL'04): 279--286.",
                "links": null
            },
            "BIBREF10": {
                "ref_id": "b10",
                "title": "SemEval-2010 task 17: All-words word sense disambiguation on a specific domain",
                "authors": [
                    {
                        "first": "Eneko",
                        "middle": [],
                        "last": "Agirre",
                        "suffix": ""
                    },
                    {
                        "first": "Christiane",
                        "middle": [],
                        "last": "Oier L\u00f3pez De Lacalle",
                        "suffix": ""
                    },
                    {
                        "first": "Shu-Kai",
                        "middle": [],
                        "last": "Fellbaum",
                        "suffix": ""
                    },
                    {
                        "first": "Maurizio",
                        "middle": [],
                        "last": "Hsieh",
                        "suffix": ""
                    },
                    {
                        "first": "Monica",
                        "middle": [],
                        "last": "Tesconi",
                        "suffix": ""
                    },
                    {
                        "first": "",
                        "middle": [],
                        "last": "Monachini",
                        "suffix": ""
                    }
                ],
                "year": 2010,
                "venue": "Proceedings of the 5th International Workshop on Semantic Evaluation",
                "volume": "",
                "issue": "",
                "pages": "75--80",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Eneko Agirre, Oier L\u00f3pez De Lacalle, Christiane Fellbaum, Shu-Kai Hsieh, Maurizio Tesconi, Monica Monachini, Piek Vossen and Roxanne Segers. 2010. SemEval-2010 task 17: All-words word sense disambiguation on a specific domain. Proceedings of the 5th International Workshop on Semantic Evaluation: 75-80. Los Angeles, California.",
                "links": null
            },
            "BIBREF11": {
                "ref_id": "b11",
                "title": "Personalizing PageRank for Word Sense Disambiguation",
                "authors": [
                    {
                        "first": "Eneko",
                        "middle": [],
                        "last": "Agirre",
                        "suffix": ""
                    },
                    {
                        "first": "Aitor",
                        "middle": [],
                        "last": "Soroa",
                        "suffix": ""
                    }
                ],
                "year": 2009,
                "venue": "Proceedings of the 12th conference of the European chapter of the Association for Computational Linguistics",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Eneko Agirre and Aitor Soroa. 2009. Personalizing PageRank for Word Sense Disambiguation. Proceedings of the 12th conference of the European chapter of the Association for Computational Linguistics (EACL-2009): Athens, Greece.",
                "links": null
            },
            "BIBREF12": {
                "ref_id": "b12",
                "title": "Mapping WordNet to the SUMO Ontology",
                "authors": [
                    {
                        "first": "Ian",
                        "middle": [],
                        "last": "Niles",
                        "suffix": ""
                    }
                ],
                "year": 2001,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Ian Niles. 2001. Mapping WordNet to the SUMO Ontology. Teknowledge Corporation.",
                "links": null
            },
            "BIBREF13": {
                "ref_id": "b13",
                "title": "FreeLing 1.3: Syntactic and semantic services in an opensource NLP library",
                "authors": [
                    {
                        "first": "Jordi",
                        "middle": [],
                        "last": "Atserias",
                        "suffix": ""
                    },
                    {
                        "first": "Bernardino",
                        "middle": [],
                        "last": "Casas",
                        "suffix": ""
                    },
                    {
                        "first": "Elisabet",
                        "middle": [],
                        "last": "Comelles",
                        "suffix": ""
                    },
                    {
                        "first": "Meritxell",
                        "middle": [],
                        "last": "Gonz\u00e1lez",
                        "suffix": ""
                    }
                ],
                "year": 2006,
                "venue": "Proceedings of LREC'06",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Jordi Atserias, Bernardino Casas, Elisabet Comelles, Meritxell Gonz\u00e1lez, Lluis Padr\u00f3 and Muntsa Padr\u00f3. 2006. FreeLing 1.3: Syntactic and semantic services in an opensource NLP library. Proceedings of LREC'06: Genoa, Italy.",
                "links": null
            },
            "BIBREF14": {
                "ref_id": "b14",
                "title": "A detailed comparison of WSD systems:an analysis of the system answers for the Senseval-2 English all words task",
                "authors": [
                    {
                        "first": "Judita",
                        "middle": [],
                        "last": "Preiss",
                        "suffix": ""
                    }
                ],
                "year": 2006,
                "venue": "Natural Language Engineering",
                "volume": "12",
                "issue": "3",
                "pages": "209--228",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Judita Preiss. 2006. A detailed comparison of WSD systems:an analysis of the system answers for the Senseval-2 English all words task. Natural Language Engineering, 12(3):209-228.",
                "links": null
            },
            "BIBREF15": {
                "ref_id": "b15",
                "title": "Exploring the construction of semantic class classiers for WSD. Sociedad Espa\u00f1ola para el Procesamiento del Lenguaje Natural",
                "authors": [
                    {
                        "first": "Luis",
                        "middle": [],
                        "last": "Villarejo",
                        "suffix": ""
                    },
                    {
                        "first": "Llu\u00eds",
                        "middle": [],
                        "last": "M\u00e1rquez",
                        "suffix": ""
                    },
                    {
                        "first": "German",
                        "middle": [],
                        "last": "Rigau",
                        "suffix": ""
                    }
                ],
                "year": 2005,
                "venue": "",
                "volume": "35",
                "issue": "",
                "pages": "195--202",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Luis Villarejo, Llu\u00eds M\u00e1rquez and German Rigau. 2005. Exploring the construction of semantic class classiers for WSD. Sociedad Espa\u00f1ola para el Procesamiento del Lenguaje Natural, 35: 195-202.",
                "links": null
            },
            "BIBREF16": {
                "ref_id": "b16",
                "title": "Introduction to the Special Issue on Word Sense Disambiguation: The State of the Art",
                "authors": [
                    {
                        "first": "Nancy",
                        "middle": [],
                        "last": "Ide",
                        "suffix": ""
                    },
                    {
                        "first": "Jean",
                        "middle": [],
                        "last": "V\u00e9ronis",
                        "suffix": ""
                    }
                ],
                "year": 1998,
                "venue": "Computational Linguistics",
                "volume": "24",
                "issue": "1",
                "pages": "1--40",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Nancy Ide and Jean V\u00e9ronis. 1998. Introduction to the Special Issue on Word Sense Disambiguation: The State of the Art. Computational Linguistics, 24(1):1-40.",
                "links": null
            },
            "BIBREF17": {
                "ref_id": "b17",
                "title": "Unsupervised Graph-based Word Sense Disambiguation Using Measures of Word Semantic Similarity",
                "authors": [
                    {
                        "first": "Ravi",
                        "middle": [],
                        "last": "Sinha",
                        "suffix": ""
                    },
                    {
                        "first": "Rada",
                        "middle": [],
                        "last": "Mihalcea",
                        "suffix": ""
                    }
                ],
                "year": 2007,
                "venue": "Proceedings of the IEEE International Conference on Semantic Computing",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Ravi Sinha and Rada Mihalcea. 2007. Unsupervised Graph-based Word Sense Disambiguation Using Measures of Word Semantic Similarity. Proceedings of the IEEE International Conference on Semantic Computing (ICSC 2007): Irvine, CA.",
                "links": null
            },
            "BIBREF18": {
                "ref_id": "b18",
                "title": "English Lexical Sample SRL and All Words. Proceedings of the 4th International Workshop on Semantic Evaluations",
                "authors": [
                    {
                        "first": "S",
                        "middle": [],
                        "last": "Sameer",
                        "suffix": ""
                    },
                    {
                        "first": "Edward",
                        "middle": [],
                        "last": "Pradhan",
                        "suffix": ""
                    },
                    {
                        "first": "Dmitriy",
                        "middle": [],
                        "last": "Loper",
                        "suffix": ""
                    },
                    {
                        "first": "Martha",
                        "middle": [
                            "Stone"
                        ],
                        "last": "Dligach",
                        "suffix": ""
                    },
                    {
                        "first": "",
                        "middle": [],
                        "last": "Palmer",
                        "suffix": ""
                    }
                ],
                "year": 2007,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "87--92",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Sameer S. Pradhan, Edward Loper, Dmitriy Dligach and Martha Stone Palmer. 2007. SemEval-2007 Task-17: English Lexical Sample SRL and All Words. Proceedings of the 4th International Workshop on Semantic Evaluations (SemEval- 2007): 87-92. Prague.",
                "links": null
            },
            "BIBREF19": {
                "ref_id": "b19",
                "title": "English All word. SENSEVAL-2: Second International Workshop on Evaluating Word Sense Disambiguation Systems",
                "authors": [
                    {
                        "first": "Scott",
                        "middle": [],
                        "last": "Cotton",
                        "suffix": ""
                    },
                    {
                        "first": "Phil",
                        "middle": [],
                        "last": "Edmonds",
                        "suffix": ""
                    },
                    {
                        "first": "Adam",
                        "middle": [],
                        "last": "Kilgarriff",
                        "suffix": ""
                    },
                    {
                        "first": "Martha",
                        "middle": [],
                        "last": "Palmer",
                        "suffix": ""
                    }
                ],
                "year": 2001,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Scott Cotton, Phil Edmonds, Adam Kilgarriff and Martha Palmer. 2001. English All word. SENSEVAL-2: Second International Workshop on Evaluating Word Sense Disambiguation Systems: Toulouse, France.",
                "links": null
            },
            "BIBREF20": {
                "ref_id": "b20",
                "title": "Using Relevant Domains Resource for Word Sense Disambiguation. IC-AI'04",
                "authors": [
                    {
                        "first": "Sonia",
                        "middle": [],
                        "last": "V\u00e1zquez",
                        "suffix": ""
                    },
                    {
                        "first": "Andr\u00e9s",
                        "middle": [],
                        "last": "Montoyo",
                        "suffix": ""
                    },
                    {
                        "first": "German",
                        "middle": [],
                        "last": "Rigau",
                        "suffix": ""
                    }
                ],
                "year": 2004,
                "venue": "Proceedings of the International Conference on Artificial Intelligence",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Sonia V\u00e1zquez, Andr\u00e9s Montoyo and German Rigau. 2004. Using Relevant Domains Resource for Word Sense Disambiguation. IC-AI'04. Proceedings of the International Conference on Artificial Intelligence: Ed: CSREA Press. Las Vegas, E.E.U.U.",
                "links": null
            },
            "BIBREF21": {
                "ref_id": "b21",
                "title": "UMCC-DLSI: Integrative resource for disambiguation task",
                "authors": [
                    {
                        "first": "Yoan",
                        "middle": [],
                        "last": "Guti\u00e9rrez",
                        "suffix": ""
                    },
                    {
                        "first": "Antonio",
                        "middle": [],
                        "last": "Fern\u00e1ndez",
                        "suffix": ""
                    }
                ],
                "year": 2010,
                "venue": "Proceedings of the 5th International Workshop on Semantic Evaluation",
                "volume": "",
                "issue": "",
                "pages": "427--432",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Yoan Guti\u00e9rrez, Antonio Fern\u00e1ndez, Andr\u00e9s Montoyo and Sonia V\u00e1zquez. 2010a. UMCC-DLSI: Integrative resource for disambiguation task. Proceedings of the 5th International Workshop on Semantic Evaluation: 427-432. Uppsala, Sweden.",
                "links": null
            },
            "BIBREF22": {
                "ref_id": "b22",
                "title": "Integration of semantic resources based on WordNet. XXVI Congreso de la Sociedad Espa\u00f1ola para el Procesamiento del Lenguaje Natural",
                "authors": [
                    {
                        "first": "Yoan",
                        "middle": [],
                        "last": "Guti\u00e9rrez",
                        "suffix": ""
                    },
                    {
                        "first": "Antonio",
                        "middle": [],
                        "last": "Fern\u00e1ndez",
                        "suffix": ""
                    }
                ],
                "year": 2010,
                "venue": "",
                "volume": "45",
                "issue": "",
                "pages": "161--168",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Yoan Guti\u00e9rrez, Antonio Fern\u00e1ndez, Andr\u00e9s Montoyo and Sonia V\u00e1zquez. 2010b. Integration of semantic resources based on WordNet. XXVI Congreso de la Sociedad Espa\u00f1ola para el Procesamiento del Lenguaje Natural, 45: 161-168. Universidad Polit\u00e9cnica de Valencia, Valencia.",
                "links": null
            }
        },
        "ref_entries": {
            "TABREF2": {
                "text": "]",
                "content": "<table><tr><td/><td>Vector</td></tr><tr><td>AR Domain</td><td>AR Domain</td></tr><tr><td>0.90 Pedagogy</td><td>0.36 Commerce</td></tr><tr><td colspan=\"2\">0.90 Administration 0.36 Quality</td></tr><tr><td>0.36 Buildings</td><td>0.36 Psychoanalysis</td></tr><tr><td>0.36 Politics</td><td>0.36 Economy</td></tr><tr><td>0.36 Environment</td><td/></tr><tr><td colspan=\"2\">Table 1. Initial Vector of Domain</td></tr></table>",
                "type_str": "table",
                "num": null,
                "html": null
            },
            "TABREF3": {
                "text": "This bottom-up process is applied for each Concept of the Initial Vector to add each Relevant Parent to the vector. After reproducing the process to each Concept of the Initial Vector, the Relevant Semantic Tree is built. As a result, theTable 2is obtained. This vector represents the Domain tree associated to the sentence such as",
                "content": "<table><tr><td>){</td></tr><tr><td>if ( PC had not been added to vector)</td></tr><tr><td>PC is added to the vector with AR(PC, s)</td></tr><tr><td>value;</td></tr><tr><td>else PC value = PC value + AR(PC, s) value; }</td></tr></table>",
                "type_str": "table",
                "num": null,
                "html": null
            },
            "TABREF4": {
                "text": "Final Domain Vector based on WND Figure 1. Relevant Semantic Tree from WNDOnce the Relevant Semantic Tree is obtained, in case of the Domain dimension the Factotum category is eliminated from the tree. Due to the fact that Factotum is a generic Domain associated to words that appear in general contexts it does not provide useful information",
                "content": "<table><tr><td colspan=\"2\">Vector</td></tr><tr><td>AR Domain</td><td>AR Domain</td></tr><tr><td colspan=\"2\">1.63 Social_Science 0.36 Buildings</td></tr><tr><td colspan=\"2\">0.90 Administration 0.36 Commerce</td></tr><tr><td>0.90 Pedagogy</td><td>0.36 Environment</td></tr><tr><td>0.80 RootDomain</td><td>0.11 Factotum</td></tr><tr><td colspan=\"2\">0.36 Psychoanalysis 0.11 Psychology</td></tr><tr><td>0.36 Economy</td><td>0.11 Architecture</td></tr><tr><td>0.36 Quality</td><td>0.11 Pure_Science</td></tr><tr><td>0.36 Politics</td><td/></tr></table>",
                "type_str": "table",
                "num": null,
                "html": null
            },
            "TABREF5": {
                "text": "Vs[concepts]; Vs k is the k-th concept of the vector Vs; ARV [Vs k ] represents the value of AR assigned to the concept Vs k for the value ARV; Freq s represents the normalized value of frequency sense obtained from cntlist file from WN 1.6; and is the term that normalizes the result.",
                "content": "<table/>",
                "type_str": "table",
                "num": null,
                "html": null
            },
            "TABREF7": {
                "text": "Results over d00.txt from Senseval-2",
                "content": "<table/>",
                "type_str": "table",
                "num": null,
                "html": null
            }
        }
    }
}