File size: 56,990 Bytes
6fa4bc9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
{
    "paper_id": "R11-1010",
    "header": {
        "generated_with": "S2ORC 1.0.0",
        "date_generated": "2023-01-19T15:05:02.185064Z"
    },
    "title": "An Open Source Punjabi Resource Grammar",
    "authors": [
        {
            "first": "Shafqat",
            "middle": [
                "Mumtaz"
            ],
            "last": "Virk",
            "suffix": "",
            "affiliation": {
                "laboratory": "",
                "institution": "University of Gothenburg",
                "location": {
                    "country": "Sweden"
                }
            },
            "email": "virk@chalmers.se"
        },
        {
            "first": "Muhammad",
            "middle": [],
            "last": "Humayoun",
            "suffix": "",
            "affiliation": {
                "laboratory": "",
                "institution": "University of Savoie",
                "location": {
                    "country": "France"
                }
            },
            "email": "humayoun@gmail.com"
        },
        {
            "first": "Aarne",
            "middle": [],
            "last": "Ranta",
            "suffix": "",
            "affiliation": {
                "laboratory": "",
                "institution": "University of Gothenburg",
                "location": {
                    "country": "Sweden"
                }
            },
            "email": ""
        }
    ],
    "year": "",
    "venue": null,
    "identifiers": {},
    "abstract": "We describe an open source computational grammar for Punjabi; a resource-poor language. The grammar is developed in GF (Grammatical framework), which is a tool for multilingual grammar formalism. First, we explore different syntactic features of Punjabi and then we implement them in accordance with GF grammar requirements, to make Punjabi the 17th language in the GF resource grammar library.",
    "pdf_parse": {
        "paper_id": "R11-1010",
        "_pdf_hash": "",
        "abstract": [
            {
                "text": "We describe an open source computational grammar for Punjabi; a resource-poor language. The grammar is developed in GF (Grammatical framework), which is a tool for multilingual grammar formalism. First, we explore different syntactic features of Punjabi and then we implement them in accordance with GF grammar requirements, to make Punjabi the 17th language in the GF resource grammar library.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Abstract",
                "sec_num": null
            }
        ],
        "body_text": [
            {
                "text": "Grammatical Framework (Ranta, 2004 ) is a special-purpose programming language for multilingual grammar applications. It can be used to write multilingual resource or application grammars (two types of grammars in GF).",
                "cite_spans": [
                    {
                        "start": 22,
                        "end": 34,
                        "text": "(Ranta, 2004",
                        "ref_id": "BIBREF4"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1."
            },
            {
                "text": "Multilingualism of the GF grammars is based on the principle that same grammatical categories (e.g. noun phrases and verb phrases) and syntax rules (e.g. predication) can appear in different languages (Ranta, 2009a) . A collection of all such categories and rules, which are independent of any language, makes the abstract syntax of GF grammars (every GF grammar has two levels: abstract and concrete). More precisely, the abstract syntax defines semantic conditions to form abstract syntax trees. For example the rule that a common noun can be modified by an adjective is independent of any language and hence is defined in the abstract syntax, e.g.: However, the way this rule is implemented may vary from one language to another; as each language may have different word order and/or agreement rules. For this purpose, we have the concrete syntax, which is a set of linguistic objects (strings, inflection tables, records) providing rendering and parsing. We may have multiple parallel concrete syntaxes for one abstract syntax, which makes the GF grammars multilingual. Also, as each concrete syntax is independent from others, it becomes possible to model the rules accordingly (i.e. word order, word forms and agreement features are chosen according to language requirements).",
                "cite_spans": [
                    {
                        "start": 201,
                        "end": 215,
                        "text": "(Ranta, 2009a)",
                        "ref_id": "BIBREF5"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1."
            },
            {
                "text": "Current state-of-the-art machine translation systems such as Systran, Google Translate, etc. provide huge coverage but sacrifice precision and accuracy of translations. On the contrary, domain-specific or controlled multilingual grammar based translation systems can provide a higher translation quality, on the expense of limited coverage. In GF, such controlled grammars are called application grammars.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1."
            },
            {
                "text": "Writing application grammars from scratch can be very expensive in terms of time, effort, expertise and money. GF provides a library called the GF resource library that can ease this task. It is a collection of linguistic oriented but general-purpose resource grammars, which try to cover the general aspects of different languages (Ranta, 2009a) .",
                "cite_spans": [
                    {
                        "start": 332,
                        "end": 346,
                        "text": "(Ranta, 2009a)",
                        "ref_id": "BIBREF5"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1."
            },
            {
                "text": "Instead of writing application grammars from scratch for different domains, one may use resource grammars as libraries (Ranta, 2009b) 2 . This method enables to create the application grammar much faster with a very limited linguistic knowledge.",
                "cite_spans": [
                    {
                        "start": 119,
                        "end": 133,
                        "text": "(Ranta, 2009b)",
                        "ref_id": "BIBREF6"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1."
            },
            {
                "text": "The number of languages covered by GF resource library is growing (17 including Punjabi). Previously, GF and/or its libraries have been used to develop a number of multilingual as well as monolingual domain-specific application grammars (see GF homepage 3 for details on these application grammars).",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1."
            },
            {
                "text": "In this paper, we describe the resource grammar development for Punjabi. Punjabi is an Indo-Aryan language widely spoken in Punjab regions of Pakistan and India. Punjabi is among one of the morphologically rich languages (others include Urdu, Hindi, Finish, etc) with SOV word order, partial ergative behavior, and verb compounding. In Pakistan it is written in Shahmukhi, and in India, it is written in Gurmukhi script (Humayoun, 2010) . Language resources for Punjabi are very limited (especially for the one spoken in Pakistan). With the best of our knowledge this work is the first attempt of implementing a computational Punjabi grammar as open-source software, covering a fair enough part of Punjabi morphology and syntax.",
                "cite_spans": [
                    {
                        "start": 420,
                        "end": 436,
                        "text": "(Humayoun, 2010)",
                        "ref_id": "BIBREF2"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1."
            },
            {
                "text": "Every grammar in GF resource grammar library has a test lexicon, which is built through the lexical functions called the lexical paradigms; see (Bringert et el, 2011) for synopsis. These paradigms take lemma of a word and make finite inflection tables, containing different forms of the word, according to the lexical rules of that particular language. A suite of Punjabi resources including morphology and a big lexicon are reported by (Humayoun and Ranta, 2010) . With minor required adjustments, we have reused morphology and a subset of that lexicon, as a test lexicon of about 450 words for our grammar implementation. However, the morphological details are beyond the scope of this paper and we refer to (Humayoun and Ranta, 2010) for more details on Punjabi morphology.",
                "cite_spans": [
                    {
                        "start": 144,
                        "end": 166,
                        "text": "(Bringert et el, 2011)",
                        "ref_id": null
                    },
                    {
                        "start": 437,
                        "end": 463,
                        "text": "(Humayoun and Ranta, 2010)",
                        "ref_id": "BIBREF2"
                    },
                    {
                        "start": 710,
                        "end": 736,
                        "text": "(Humayoun and Ranta, 2010)",
                        "ref_id": "BIBREF2"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Morphology",
                "sec_num": "2."
            },
            {
                "text": "While morphology is about types and formation of individual words (lexical categories), it is the syntax, which decides how these words are grouped together to make well-formed sentences. For this purpose, individual words, which belong to different lexical categories, are converted into richer syntactic categories, i.e. noun phrases (NP), verb phrases (VP), and adjectival phrases (AP), etc. With this up-cast the linguistic features such as word-forms, number & gender information, and agreements, etc, travel from individual words to the richer categories.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Syntax",
                "sec_num": "3."
            },
            {
                "text": "In this section, we explain this conversion from lexical to syntactic categories and afterwards, we demonstrate how to glue the individual pieces to make clauses. These are then can be used to make well-formed sentences in Punjabi. The following subsections explain various types of phrases.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Syntax",
                "sec_num": "3."
            },
            {
                "text": "A noun phrase (NP) is a single word or a group of words that does not have a subject and a predicate of its own, and does the work of a noun (Verma, 1974) . Now we show the structure of noun phrase in our implementation, followed by the description of its different parts. The label 's' is an inflection table from NPCase to string (NPCase => Str). NPCase has two constructs (NPC Case, and NPErg) as shown below:",
                "cite_spans": [
                    {
                        "start": 141,
                        "end": 154,
                        "text": "(Verma, 1974)",
                        "ref_id": "BIBREF7"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Noun Phrases",
                "sec_num": "3.1."
            },
            {
                "text": "NPCase = NPC Case | NPErg ; Case = Dir | Obl | Voc | Abl ;",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Noun Phrases",
                "sec_num": "3.1."
            },
            {
                "text": "The construct (NPC Case) stores the lexical cases (i.e. Direct, Oblique, Vocative and Ablative) of a noun 4 . As an example consider the following table for the noun \"boy\":",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Noun Phrases",
                "sec_num": "3.1."
            },
            {
                "text": "s .NPC Dir => m \u028a n \u0256 \u0251 : \u010c \u0133 s .NPC Obl => m \u028a n \u0256 \u025b \u010d \u0133 s .NPC Voc => m \u028a n \u0256 i : a \u0115 \u0133 s .NPC Abl => m \u028a n \u0256 \u025b o : \u0273 \u0133",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Noun Phrases",
                "sec_num": "3.1."
            },
            {
                "text": "Other than storing the lexical cases of a noun as shown in the above table, we also construct the ergative case (i.e. NPErg in the code above). We do it at the noun phrase level for the 4 Punjabi nouns have four lexical cases.",
                "cite_spans": [
                    {
                        "start": 186,
                        "end": 187,
                        "text": "4",
                        "ref_id": null
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Noun Phrases",
                "sec_num": "3.1."
            },
            {
                "text": "following reason: In Urdu, the case markers that follow the nouns in the form of post-positions cannot be handled at lexical level through morphological suffixes and thus need to be handled at syntax level (Butt and King, 2002) 5 . It also applies to Punjabi. So we construct the ergative case of a noun by attaching ergative case marker 'n\u025b' to the oblique case of the noun at NP level. For instance, the ergative form of our running example \"boy\" is:",
                "cite_spans": [
                    {
                        "start": 206,
                        "end": 227,
                        "text": "(Butt and King, 2002)",
                        "ref_id": "BIBREF1"
                    },
                    {
                        "start": 228,
                        "end": 229,
                        "text": "5",
                        "ref_id": null
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Noun Phrases",
                "sec_num": "3.1."
            },
            {
                "text": "s.NPErg => m \u028a n \u0256 \u025b n \u025b _Erg \u010d \u0133 a",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Noun Phrases",
                "sec_num": "3.1."
            },
            {
                "text": "It is used for the subjects of perfective transitive verbs (see Section 3.5 for more details).",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Noun Phrases",
                "sec_num": "3.1."
            },
            {
                "text": "The label 'a' represents the agreement feature (Agr) and stores information about gender, number and person that will be used for agreement with other constituents. It is defined as follows:",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Noun Phrases",
                "sec_num": "3.1."
            },
            {
                "text": "Agr = Ag Gender Number Person ;",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Noun Phrases",
                "sec_num": "3.1."
            },
            {
                "text": "In Punjabi, the gender can be masculine or feminine; number can be singular and plural; and person can be first, second casual, second with respect and third person near & far. These are defined as shown below:",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Noun Phrases",
                "sec_num": "3.1."
            },
            {
                "text": "Gender = Masc | Fem ; Number = Sg | Pl ; Person = Pers1 | Pers2_Casual | Pers2_Respect | Pers3_Near | Pers3_Far",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Noun Phrases",
                "sec_num": "3.1."
            },
            {
                "text": "Finally, the label 'isPron' is a Boolean parameter, which shows whether NP is constructed from a pronoun. This information is important when dealing with the exceptions in ergative behavior of verbs for the first and second person pronouns in Punjabi. For example consider the following constructions: From the above examples, we can see that, when we have the first or second person pronoun as subject, the ergative case marker is not used (first two examples). On the contrary, it is used in all other cases. So for our running example, i.e. the noun (boy, m\u028an\u0256\u0251:), the label 'isPron' is false. Construction: First, the lexical category noun (N) is converted to an intermediate category, common noun (CN) through the UseN function. CN is a syntactic category, which is used to deal with the modifications of nouns by adjectives, determiners, etc. Then, the common noun is converted to the syntactic category, noun phrase (NP). Three main types of noun phrases are: (1) common nouns with determiners, (2) proper names, and 3pronouns. We build these noun phrases through different noun phrase construction functions depending on the constituents of NP. As an example consider (1). We define it with a function DetCN given below: Here (Det) is a lexical category representing determiners. The above given function takes the determiner (Det) and the common noun (CN) as parameters and builds the NP, by combining appropriate forms of the determiner and the common noun agreeing with each other. For example if 'every' and 'boy' are the parameters for the above given function the result will be a NP: every boy, h \u0259 r m \u028a n \u0256 \u0251 :",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Noun Phrases",
                "sec_num": "3.1."
            },
            {
                "text": "m i : \u0273 _ I",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Noun Phrases",
                "sec_num": "3.1."
            },
            {
                "text": "Every boy,",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Noun Phrases",
                "sec_num": "3.1."
            },
            {
                "text": ". Consider the linearization of DetCN:",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Noun Phrases",
                "sec_num": "3.1."
            },
            {
                "text": "lin DetCN det cn = { s=\\\\c => detcn2NP det cn c det.n; a = agrP3 cn.gdet.n ; isPron = False } ;",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Noun Phrases",
                "sec_num": "3.1."
            },
            {
                "text": "As we know from the structure of NP (given in the beginning of \u00a73.1) 's' represents the inflection table used to store different forms of NP built by the following line from the above code:",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Noun Phrases",
                "sec_num": "3.1."
            },
            {
                "text": "s = \\\\c => detcn2NP det cn c det.n;",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Noun Phrases",
                "sec_num": "3.1."
            },
            {
                "text": "Notice that the operator ('\\\\') is used as shorthand to represent different rows of the inflection table 's'. An alternative but a verbose code segment for the above line will be: Also notice that the selection operator (the exclamation sign !) is used to select appropriate forms from the inflection tables (i.e. cn.s!n!c, which means the form of the common noun with number 'n' and case 'c' from the inflection table cn.s).",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Noun Phrases",
                "sec_num": "3.1."
            },
            {
                "text": "s =",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Noun Phrases",
                "sec_num": "3.1."
            },
            {
                "text": "Other main types of noun phrases (2) and (3) are constructed through the following functions. This covers only three main types of noun phrases, but there are other types of noun phrases as well, i.e. adverbial post-modified NP, adjectival modified common nouns etc. In order to cover them we have one function for each such construction. Few of these are given below; for full details we refer to (Bringert et el, 2011) . The structure of VPHForm makes sure that we preserve all inflectional forms of the verb. In it we have three cases: (1) Inflectional forms inflecting for tense (VPPTense) and number, gender, person with Agr defined on page 3. 2The second constructor (VPInf) carries the infinitive form. (3) On the contrary, VPStem carries the root form. The reason for separating these three cases is that they cannot occur at the same time.",
                "cite_spans": [
                    {
                        "start": 398,
                        "end": 420,
                        "text": "(Bringert et el, 2011)",
                        "ref_id": null
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Noun Phrases",
                "sec_num": "3.1."
            },
            {
                "text": "The label 'inf' stores the required form of the verb in that corresponding tense, whereas 'fin' stores the copula (auxiliary verb).",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Noun Phrases",
                "sec_num": "3.1."
            },
            {
                "text": "The label 'obj' on the other hand, stores the object of the verb and also the agreement information of the object. The label 'subj' stores information about transitivity of the verb with VType, which include: intransitive, transitive or di-transitive:",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Noun Phrases",
                "sec_num": "3.1."
            },
            {
                "text": "VType = VIntrans|VTrans|VDiTrans ;",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Noun Phrases",
                "sec_num": "3.1."
            },
            {
                "text": "The label 'comp' stores the complement of the verb. Notice that it also inflects in number, gender and person (with Agr defined on page 3), whereas the label 'ad' stores the adverb.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Noun Phrases",
                "sec_num": "3.1."
            },
            {
                "text": "Finally, 'embComp' stores the embedded complement. It is used to deal with exceptions in the word order of Punjabi when making a clause. For instance, if a sentence or a question sentence is a complement of the verb then it takes a different position in the clause; i.e. it comes at very end of the clause as shown in the example with bold-face: On the contrary, if an adverb is used as a complement of verb then it comes before the main verb, as shown in the following example: The lexical category V has three forms (corresponding to perfective/imperfective aspects and subjunctive mood). These forms are then used to make four forms (VPPres, VPPast, VPFutr, VPPerf in the above code) at the VP level, which are used to cover different combinations of tense, aspect and mood of Punjabi at clause level.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Noun Phrases",
                "sec_num": "3.1."
            },
            {
                "text": "oo",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Noun Phrases",
                "sec_num": "3.1."
            },
            {
                "text": "oo",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Noun Phrases",
                "sec_num": "3.1."
            },
            {
                "text": "As an example, consider the explanation of the above code in bold-face. It builds a part of the inflection table represented by 's' for VPPres and all possible combination of gender, number and person (Ag g n p). As shown above, the imperfective form of lexical category V (VF Imperf p n g) is used to make present tense at VP-level. The main verb is stored in the field labeled as 'inf' and the corresponding auxiliary verb (copula) is stored in the label 'fin'.",
                "cite_spans": [
                    {
                        "start": 324,
                        "end": 333,
                        "text": "VP-level.",
                        "ref_id": null
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Noun Phrases",
                "sec_num": "3.1."
            },
            {
                "text": "All other parts of VP are initialized to default or empty values in the above code. These parts will be used to enrich the VP with other constituents, e.g. adverb, complement etc. This is done in other VP construction functions including but not limited to: ",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Noun Phrases",
                "sec_num": "3.1."
            },
            {
                "text": "Want",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Noun Phrases",
                "sec_num": "3.1."
            },
            {
                "text": "At morphological level, Punjabi adjectives inflect in number, gender and case (Humayoun and Ranta, 2010) . At syntax level, they agree with the noun they modify using the agreement information of the NP. Adjectival phrase (AP) can be constructed simply from the lexical category adjective (A) through the following function:",
                "cite_spans": [
                    {
                        "start": 78,
                        "end": 104,
                        "text": "(Humayoun and Ranta, 2010)",
                        "ref_id": "BIBREF2"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Adjectival Phrases",
                "sec_num": "3.3."
            },
            {
                "text": "PositA : A \u2192 AP ; (Warm, g \u0259 r \u0259 m )",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Adjectival Phrases",
                "sec_num": "3.3."
            },
            {
                "text": "Or from other categories such as: ",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Adjectival Phrases",
                "sec_num": "3.3."
            },
            {
                "text": "Warmer than I, m i \u02d0 r e \u02d0 _ I",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Adjectival Phrases",
                "sec_num": "3.3."
            },
            {
                "text": "The construction of Punjabi adverbs is very simple because \"they are normally unmarked and don't inflect\" (Humayoun and Ranta, 2010) . We have different construction functions for Adverbs and other closed classes both at lexical and syntactical level. For instance, consider the construction of adverbs with two functions (but not limited to):",
                "cite_spans": [
                    {
                        "start": 106,
                        "end": 132,
                        "text": "(Humayoun and Ranta, 2010)",
                        "ref_id": "BIBREF2"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Adverbs and Closed Classes",
                "sec_num": "3.4."
            },
            {
                "text": "Warmly, g \u0259 r \u0259 m d \u0292 \u028b x i \u02d0 fun PositAdvAdj : A \u2192 Adv ; Very quickly, b o h t _ v e r y t i \u02d0 z i _ q u i c k l y d e n a l _ c o u p l a fun AdAdv : AdA \u2192 Adv \u2192 Adv ;",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Adverbs and Closed Classes",
                "sec_num": "3.4."
            },
            {
                "text": "While a phrase is a single word or group of words, which are grammatically linked to each other, a clause on the other hand, is a single phrase or group of phrases.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Clauses",
                "sec_num": "3.5."
            },
            {
                "text": "Different types of phrases (e.g. NP, VP, etc) are grouped together to make clauses 6 . Clauses are then used to make sentences. In GF tense system the difference between a clause and a sentence is: A clause has a variable tense while a sentence has a fixed tense.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Clauses",
                "sec_num": "3.5."
            },
            {
                "text": "We first construct clauses and then just fix their tense in order to make sentences. The most important construction of a clause is:",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Clauses",
                "sec_num": "3.5."
            },
            {
                "text": "PredVP : NP \u2192 VP \u2192 Cl; --Ali walks",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Clauses",
                "sec_num": "3.5."
            },
            {
                "text": "The clause (Cl) has the following type: The tense system of GF resource library covers only eight combinations with four tenses (present, past, future and conditional) and two anteriorities (Anter and Simul). It does not cover the full tense system of Punjabi, which is structured around the aspect and the tense/mood. We make sentences in twelve different tenses (VPHTense in the above given code) at clause level to get a maximum coverage of the Punjabi tense system. Polarity is used to construct positive and negative, while Order is used to construct direct and question clauses.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Clauses",
                "sec_num": "3.5."
            },
            {
                "text": "We ensure the SOV agreement by saving all needed features in NP. These are made accessible in the PredVP function.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Clauses",
                "sec_num": "3.5."
            },
            {
                "text": "A distinguishing feature of Punjabi SOV agreement is ergative behavior where transitive perfective verb may agree with the direct object instead of the subject. Ergativity is ensured by selecting the agreement features and noun-form accordingly. We demonstrate this in the following simplified code segment: subj agr : NPCase * Agr = case vt of { 6 Verb phrases alone can also be used as clause some times. For perfective aspect (VPImpPast), if the verb is transitive then it agrees with the object and therefore the ergative case of NP is used (VTrans in the above code).",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Clauses",
                "sec_num": "3.5."
            },
            {
                "text": "For DiTransitive (i.e. VDiTrans in the above code) the agreement is set to default but the ergative case is still needed.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Clauses",
                "sec_num": "3.5."
            },
            {
                "text": "In all other cases, specified with the wild card \"_\" above, the agreement is made with the subject (np.a), and we use the direct case (i.e.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Clauses",
                "sec_num": "3.5."
            },
            {
                "text": "After selecting the appropriate forms of each constituent (according to the agreement features) they are grouped together to form the clause. For instance, consider the following simplified code segment combining different constituents of a Where:",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "NPC Dir).",
                "sec_num": null
            },
            {
                "text": "(1) np.s!subj is the subject;",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "NPC Dir).",
                "sec_num": null
            },
            {
                "text": "(2) vp.obj.s is the object (if any); (3) vp.ad is the adverb (if any); (4) vp.comp!np.a is verb's complement; (5) nahim is the negative clause constant; (6) vps.inf is the verb; (7) vps.fin is the auxiliary verb; (8) vp.embComp is an embedded complement.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "NPC Dir).",
                "sec_num": null
            },
            {
                "text": "The grammar we have developed consists of 40 categories and 190 syntax functions. It covers only a fair enough part of the language. The reason for this limitation is approach of the common abstract syntax defined for all the languages in the GF resource library. Indeed it is not possible to have an abstract syntax, which is common to, and covers all features of all languages. Consequently, the current grammar does not cover all aspects of Punjabi.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Coverage and Limitations",
                "sec_num": "4."
            },
            {
                "text": "However, this does not put any limitation on the extension of a language resource. It can be extended by implementing language specific features as extra language-specific modules. However these features will not be accessible through the common API, but can be accessed in the Punjabi application grammars.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Coverage and Limitations",
                "sec_num": "4."
            },
            {
                "text": "It is important to note that completeness is not the success criteria for this kind of grammar based resource but accuracy is (Ranta 2009b) . Evaluating a resource grammar is just like evaluating a software library in general. However, this type of evaluation is different from evaluation of a natural language processing application in general, where testing is normally done against some corpus. To evaluate the accuracy, we use the Punjabi resource grammar to translate, and observe, a test suite of examples 7 from English to Punjabi and vice versa. We achieved an accuracy of 98.1%. The reason for not having 100% accuracy is that our current grammar does not cover all aspects of the language. One such aspect is compound verbs of Punjabi, formed by nouns and the auxiliary verb 'to be' (hona:). In this case, its gender must agree with the inherent gender of the noun. We have not yet covered this agreement for compound verbs and therefore, produce incorrect translations. An interesting (yet wrong) example would be: , the boy slept weeping). Coverage of such language specific details is one direction for the future work.",
                "cite_spans": [
                    {
                        "start": 126,
                        "end": 139,
                        "text": "(Ranta 2009b)",
                        "ref_id": "BIBREF6"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Evaluation and Future Work",
                "sec_num": "5."
            },
            {
                "text": "In general language resources for Punjabi are very limited; especially for the one spoken in Pakistan and written in Shahmukhi. Furthermore, most of the applications related to Punjabi are designed only for the Punjabi, written and spoken in India; hence, only support the Gurmukhi script. A review of such applications is given in (Lehal, 2009) .",
                "cite_spans": [
                    {
                        "start": 332,
                        "end": 345,
                        "text": "(Lehal, 2009)",
                        "ref_id": "BIBREF3"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Related Work and Conclusion",
                "sec_num": "6."
            },
            {
                "text": "There are some attempts to interchange between these scripts with transliteration 7 See (Bringert et el, 2011) for this test suite of examples. systems. However, the current systems only seem to provide partial solutions, mainly because of the vocabulary differences (Humayoun and Ranta, 2010) .",
                "cite_spans": [
                    {
                        "start": 88,
                        "end": 110,
                        "text": "(Bringert et el, 2011)",
                        "ref_id": null
                    },
                    {
                        "start": 267,
                        "end": 293,
                        "text": "(Humayoun and Ranta, 2010)",
                        "ref_id": "BIBREF2"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Related Work and Conclusion",
                "sec_num": "6."
            },
            {
                "text": "A transfer-based machine translation system reported in (Lehal, 2009) translates between Punjabi and Hindi only. On the contrary, the Punjabi resource grammar is based on Interlingua approach, which makes it possible to translate between seventeen languages in parallel. With the best of our knowledge this work is the first attempt to implement a computational Punjabi grammar as open source.",
                "cite_spans": [
                    {
                        "start": 56,
                        "end": 69,
                        "text": "(Lehal, 2009)",
                        "ref_id": "BIBREF3"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Related Work and Conclusion",
                "sec_num": "6."
            },
            {
                "text": "We have described the implementation of the computational grammar for Punjabi. It might be a useful resource, and may encourage other researchers to work in this direction.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Related Work and Conclusion",
                "sec_num": "6."
            },
            {
                "text": "As the resource grammar does not cover full features of Punjabi, although it is not possible to use it for parsing and translation of arbitrary text, it is best suited for building domain specific application grammars.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Related Work and Conclusion",
                "sec_num": "6."
            },
            {
                "text": "In GF code, cat and fun belong to abstract syntax. On the contrary, lincat and lin belong to concrete syntax.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "",
                "sec_num": null
            },
            {
                "text": "This idea is influenced by programming language API tradition in which, a standard general-purpose library is supported by the language. It is then used by programmers to write specific applications.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "",
                "sec_num": null
            },
            {
                "text": "http://www.grammaticalframework.org/",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "",
                "sec_num": null
            },
            {
                "text": "This also explains the reason for NPErg to be separate from \"NPC Case\".",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "",
                "sec_num": null
            }
        ],
        "back_matter": [],
        "bib_entries": {
            "BIBREF0": {
                "ref_id": "b0",
                "title": "GF Resource Grammar Library Synopsis",
                "authors": [
                    {
                        "first": "B",
                        "middle": [],
                        "last": "Bringert",
                        "suffix": ""
                    },
                    {
                        "first": "T",
                        "middle": [],
                        "last": "Hallgren",
                        "suffix": ""
                    },
                    {
                        "first": "A",
                        "middle": [],
                        "last": "Ranta",
                        "suffix": ""
                    }
                ],
                "year": 2011,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "B. Bringert, T. Hallgren, A. Ranta. 2011. GF Resource Grammar Library Synopsis.",
                "links": null
            },
            "BIBREF1": {
                "ref_id": "b1",
                "title": "The Parallel Grammar Project",
                "authors": [
                    {
                        "first": "M",
                        "middle": [],
                        "last": "Butt",
                        "suffix": ""
                    },
                    {
                        "first": "H",
                        "middle": [],
                        "last": "Dyvik",
                        "suffix": ""
                    },
                    {
                        "first": "T",
                        "middle": [
                            "H"
                        ],
                        "last": "King",
                        "suffix": ""
                    },
                    {
                        "first": "H",
                        "middle": [],
                        "last": "Masuichi",
                        "suffix": ""
                    },
                    {
                        "first": "C",
                        "middle": [],
                        "last": "Rohrer",
                        "suffix": ""
                    }
                ],
                "year": 2002,
                "venue": "Proceedings of COLING-2002. Workshop on Grammar Engineering and Evaluation",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "M. Butt, H. Dyvik, T. H. King, H. Masuichi, C. Rohrer. 2002. The Parallel Grammar Project. In Proceedings of COLING-2002. Workshop on Grammar Engineering and Evaluation.",
                "links": null
            },
            "BIBREF2": {
                "ref_id": "b2",
                "title": "Developing Punjabi Morphology, Corpus and Lexicon",
                "authors": [
                    {
                        "first": "M",
                        "middle": [],
                        "last": "Humayoun",
                        "suffix": ""
                    },
                    {
                        "first": "A",
                        "middle": [],
                        "last": "Ranta",
                        "suffix": ""
                    }
                ],
                "year": 2010,
                "venue": "The 24th Pacific Asia conference on Language, Information and Computation",
                "volume": "",
                "issue": "",
                "pages": "163--172",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "M. Humayoun and A. Ranta. 2010. Developing Punjabi Morphology, Corpus and Lexicon. The 24th Pacific Asia conference on Language, Information and Computation. pp: 163-172.",
                "links": null
            },
            "BIBREF3": {
                "ref_id": "b3",
                "title": "A Survey of the State of the Art in Punjabi Language Processing",
                "authors": [
                    {
                        "first": "G",
                        "middle": [
                            "S"
                        ],
                        "last": "",
                        "suffix": ""
                    }
                ],
                "year": 2009,
                "venue": "Language In India",
                "volume": "9",
                "issue": "10",
                "pages": "9--23",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "G. S. Lehal. 2009. A Survey of the State of the Art in Punjabi Language Processing, Language In India, Volume 9, No. 10, pp. 9-23.",
                "links": null
            },
            "BIBREF4": {
                "ref_id": "b4",
                "title": "Grammatical Framework: A Type-Theoretical Grammar Formalism",
                "authors": [
                    {
                        "first": "A",
                        "middle": [],
                        "last": "Ranta",
                        "suffix": ""
                    }
                ],
                "year": 2004,
                "venue": "Journal of Functional Programming",
                "volume": "14",
                "issue": "2",
                "pages": "145--189",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "A. Ranta. 2004. Grammatical Framework: A Type- Theoretical Grammar Formalism. Journal of Functional Programming, 14(2), pp. 145-189.",
                "links": null
            },
            "BIBREF5": {
                "ref_id": "b5",
                "title": "Grammatical Framework: A Multilingual Grammar Formalism",
                "authors": [
                    {
                        "first": "A",
                        "middle": [],
                        "last": "Ranta",
                        "suffix": ""
                    }
                ],
                "year": 2009,
                "venue": "Language and Linguistics Compass",
                "volume": "3",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "A. Ranta. 2009a. Grammatical Framework: A Multilingual Grammar Formalism, Language and Linguistics Compass, Vol. 3.",
                "links": null
            },
            "BIBREF6": {
                "ref_id": "b6",
                "title": "Grammars as Software Libraries",
                "authors": [
                    {
                        "first": "A",
                        "middle": [],
                        "last": "Ranta",
                        "suffix": ""
                    }
                ],
                "year": 2009,
                "venue": "From Semantics to Computer Science",
                "volume": "",
                "issue": "",
                "pages": "281--308",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "A. Ranta. 2009b. Grammars as Software Libraries. In Y. Bertot, G. Huet, J-J. L\u00e9vy, and G. Plotkin (eds.), From Semantics to Computer Science, Cambridge University Press, pp. 281-308.",
                "links": null
            },
            "BIBREF7": {
                "ref_id": "b7",
                "title": "The Structure of the Noun Phrase in English and Hindi by Review author(s)",
                "authors": [
                    {
                        "first": "M",
                        "middle": [
                            "K K"
                        ],
                        "last": "Verma ; R",
                        "suffix": ""
                    },
                    {
                        "first": "L",
                        "middle": [
                            "A"
                        ],
                        "last": "Barz",
                        "suffix": ""
                    }
                ],
                "year": 1974,
                "venue": "Schwarzschild Journal of the American Oriental Society",
                "volume": "94",
                "issue": "4",
                "pages": "492--494",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "M. K. Verma. 1974. The Structure of the Noun Phrase in English and Hindi by Review author(s): R. K. Barz, L. A. Schwarzschild Journal of the American Oriental Society, Vol. 94, No. 4, pp. 492-494.",
                "links": null
            }
        },
        "ref_entries": {
            "FIGREF1": {
                "text": "In GF, we represent the NP as a record with three fields, labeled as: 's' , 'a' and",
                "num": null,
                "type_str": "figure",
                "uris": null
            },
            "TABREF0": {
                "type_str": "table",
                "content": "<table><tr><td/><td/><td/><td/><td/><td/><td/><td/><td>m \u028a n \u0256 \u025b : _ \u0133 a \u010f b o y n \u025b : _ E r g M a r \u010d \u0112 \u0115 \u0144 a \u0151 \u014b</td><td>k e r</td><td>r u : \u0288 i</td><td>: _ b r</td><td>e a d</td><td>k \u02b0 a d i</td><td>_ a t :</td><td>e</td></tr><tr><td/><td colspan=\"3\">r o</td><td colspan=\"3\">: \u0288 i : _ b r</td><td colspan=\"2\">e a d</td><td>k \u02b0</td><td>a d i : _ a t</td><td>e</td></tr><tr><td colspan=\"9\">\u010f I ate bread. \u0112 \u0115 \u0144 a \u0151 \u014b a \u0133</td></tr><tr><td>t u : \u0273 _</td><td>y o</td><td>u</td><td colspan=\"3\">r u : \u0288</td><td colspan=\"2\">i : _</td><td>b r e a d</td><td>k \u02b0 a d \u032a i : _ a</td><td>t e</td></tr><tr><td colspan=\"9\">\u010f You ate bread. \u0112 \u0115 \u0144 a \u0151 \u014b a</td></tr><tr><td colspan=\"5\">a u : n \u025b : _ H e</td><td colspan=\"4\">r u : \u0288 i : _ b r e</td><td>a d</td><td>k \u02b0 a d i : _ a t e</td></tr><tr><td colspan=\"9\">\u0151 He ate bread. \u010c \u010f \u0112 \u0115 \u0144 a \u0151 \u014b</td></tr></table>",
                "num": null,
                "text": "The boy ate bread.",
                "html": null
            },
            "TABREF3": {
                "type_str": "table",
                "content": "<table><tr><td>VPH : Type = {</td></tr><tr><td>s:VPHForm =&gt; {fin, inf : Str};</td></tr><tr><td>obj : {s : Str ; a : Agr} ;</td></tr><tr><td>subj: VType ;</td></tr><tr><td>comp: Agr =&gt;Str;</td></tr><tr><td>ad : Str ;</td></tr><tr><td>embComp : Str} ;</td></tr><tr><td>VPHForm =</td></tr><tr><td>VPTense VPPTense Agr|VPInf|VPStem ;</td></tr><tr><td>VPPTense=</td></tr><tr><td>PPres|VPPast|VPFutr|VPPerf;</td></tr><tr><td>Paris today, fun AdvNP : NP a j _ t \u2192 o d a y Adv p i \u02d0 r \u0259 s _ \u2192 P a r i s NP ;</td></tr><tr><td>Big house, fun AdjCN : AP \u028b \u0259 d d \u0251 \u02d0 \u2192 _ b i g CN \u0261 \u02b1 \u0259 r _ h \u2192 o u s e CN ;</td></tr><tr><td>3.2. Verb Phrases</td></tr><tr><td>A verb phrase (VP), as a syntactic category, is</td></tr><tr><td>the most complex structure in our constructions.</td></tr><tr><td>It carries the main verb and auxiliaries (such as</td></tr><tr><td>adverb, object of the verb, type of the verb,</td></tr><tr><td>agreement information, etc), which are then</td></tr><tr><td>used in the construction of other categories</td></tr><tr><td>and/or clauses.</td></tr><tr><td>Structure: In GF, we represent a verb phrase as</td></tr><tr><td>a record, as shown below:</td></tr></table>",
                "num": null,
                "text": "The label 's' represents an inflection table which keeps a record with two string values, i.e. {fin, inf : Str} for every value of VPHForm, which is defined as shown below:",
                "html": null
            },
            "TABREF8": {
                "type_str": "table",
                "content": "<table/>",
                "num": null,
                "text": "Punjabi clause: np.s!subj ++ vp.obj.s ++ vp.ad ++ vp.comp!np.a ++ nahim ++ vps.inf ++ vps.fin ++ vp.embComp;",
                "html": null
            }
        }
    }
}