File size: 85,807 Bytes
6fa4bc9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
{
    "paper_id": "R11-1005",
    "header": {
        "generated_with": "S2ORC 1.0.0",
        "date_generated": "2023-01-19T15:03:53.283701Z"
    },
    "title": "Knowledge-Poor Approach to Shallow Parsing: Contribution of Unsupervised Part-of-Speech Induction",
    "authors": [
        {
            "first": "Marie",
            "middle": [],
            "last": "Gu\u00e9gan",
            "suffix": "",
            "affiliation": {},
            "email": "guegan@syllabs.com"
        }
    ],
    "year": "",
    "venue": null,
    "identifiers": {},
    "abstract": "Natural language processing tasks often rely on part-of-speech (POS) tagging as a preprocessing step. However it is not clear how the absence of any part-of-speech tagger should hamper the development of other natural language processing tools. In this paper we investigate the contribution of fully unsupervised part-of-speech induction to a common natural language processing task. We focus on the supervised English shallow parsing task and compare systems relying either on POS induction, on POS tagging, or on lexical features only as a baseline. Our experiments on the English CoNLL'2000 dataset show a significant benefit from POS induction over the baseline, with performances close to those obtained with a traditional POS tagger. Results demonstrate a great potential of POS induction for shallow parsing which could be applied to resource-scarce languages.",
    "pdf_parse": {
        "paper_id": "R11-1005",
        "_pdf_hash": "",
        "abstract": [
            {
                "text": "Natural language processing tasks often rely on part-of-speech (POS) tagging as a preprocessing step. However it is not clear how the absence of any part-of-speech tagger should hamper the development of other natural language processing tools. In this paper we investigate the contribution of fully unsupervised part-of-speech induction to a common natural language processing task. We focus on the supervised English shallow parsing task and compare systems relying either on POS induction, on POS tagging, or on lexical features only as a baseline. Our experiments on the English CoNLL'2000 dataset show a significant benefit from POS induction over the baseline, with performances close to those obtained with a traditional POS tagger. Results demonstrate a great potential of POS induction for shallow parsing which could be applied to resource-scarce languages.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Abstract",
                "sec_num": null
            }
        ],
        "body_text": [
            {
                "text": "Shallow parsing is a specific type of phrase chunking which is often used for different Natural Language Processing (NLP) tasks like text mining or question answering. The goal of the task is to divide a text into syntactically related non-overlapping groups of words (Tjong Kim Sang and Buchholz, 2000) . These include noun, verb, or adjective phrases. It usually requires a part-of-speech (POS) tagger and a training corpus annotated with shallow parsing tags.",
                "cite_spans": [
                    {
                        "start": 268,
                        "end": 303,
                        "text": "(Tjong Kim Sang and Buchholz, 2000)",
                        "ref_id": "BIBREF26"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "Unfortunately, one is often constrained by the lack of resources, tools or language experts, for instance when dealing with resource-scarce languages. In particular, the elaboration of a POS tagger is a delicate issue. Without any linguistic expert, the only possible approaches are statistical. Training POS taggers requires the manual constitution of either a large annotated corpus or a large morphosyntactic lexicon. These resources are very costly, both in time and in terms of linguistic knowledge required from the annotator.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "By contrast, we notice that the concept of shallow parsing is relatively easily understandable by native speakers, even if they are not linguists. Relative to POS tagging, its annotation does not require a prohibitive amount of time and effort 1 . This is especially the case when the full shallow parsing task is reduced to a certain chunk type, as noun phrases for instance. Hence we think the most difficult requirement for the task is the POS tagging preprocessing step.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "This observation drew our attention to the following question: is the POS tagging step necessary to shallow parsing? In this paper we intend to show how shallow parsing may benefit from fully unsupervised POS induction methods, as an alternative to accurate POS tagging. Section 2 introduces related work. Despite the popularity of shallow parsing and POS induction, we found only one paper related to POS induction for shallow parsing. Section 3 describes the models, tools and corpora we used: an existing POS induction tool (Clark, 2003) , an implementation of Conditional Random Fields (CRF++) and the CoNLL'2000 dataset. Experiments and results are presented in Section 4. POS induction greatly improves the baseline, with performances close to supervised POS tagging.",
                "cite_spans": [
                    {
                        "start": 527,
                        "end": 540,
                        "text": "(Clark, 2003)",
                        "ref_id": "BIBREF10"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "Shallow parsing has become a common task in NLP. The originality of our method is to rely on part-of-speech induction rather than accurate POS tagging.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Related Work",
                "sec_num": "2"
            },
            {
                "text": "Traditional approaches rely on preprocessing by an accurate POS tagger. Most work on shallow parsing is based on the English CoNLL'2000 shared task, which provided reference datasets for training and testing. The CoNLL dataset actually contains POS tags assigned by the Brill (1995) tagger. A number of approaches have been evaluated on these datasets, for general shallow parsing as well as for the simpler noun phrase chunking task: support vector machines (SVM) with polynomial kernels (Kudo and Matsumoto, 2001; Goldberg and Elhadad, 2009) and linear kernels (Lee and Wu, 2007) , conditional random fields (Sha and Pereira, 2003) , maximum likelihood trigram models (Shen and Sarkar, 2005) , probabilistic finite-state automata (Araujo and Serrano, 2008) , transformation-based learning or memory-based learning . So far, SVM have achieved the best stateof-the-art performances.",
                "cite_spans": [
                    {
                        "start": 270,
                        "end": 282,
                        "text": "Brill (1995)",
                        "ref_id": "BIBREF6"
                    },
                    {
                        "start": 489,
                        "end": 515,
                        "text": "(Kudo and Matsumoto, 2001;",
                        "ref_id": "BIBREF17"
                    },
                    {
                        "start": 516,
                        "end": 543,
                        "text": "Goldberg and Elhadad, 2009)",
                        "ref_id": "BIBREF13"
                    },
                    {
                        "start": 563,
                        "end": 581,
                        "text": "(Lee and Wu, 2007)",
                        "ref_id": "BIBREF19"
                    },
                    {
                        "start": 610,
                        "end": 633,
                        "text": "(Sha and Pereira, 2003)",
                        "ref_id": "BIBREF23"
                    },
                    {
                        "start": 670,
                        "end": 693,
                        "text": "(Shen and Sarkar, 2005)",
                        "ref_id": "BIBREF24"
                    },
                    {
                        "start": 732,
                        "end": 758,
                        "text": "(Araujo and Serrano, 2008)",
                        "ref_id": "BIBREF0"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Shallow Parsing",
                "sec_num": "2.1"
            },
            {
                "text": "To our knowledge, little work has considered other languages. Chunking corpora have been derived from the Arabic Treebank (Diab et al., 2004) and the UPENN Chinese Treebank-4 (Chen et al., 2006) . Goldberg et al. (2006) showed that the traditional definition of base noun phrases as non-recursive noun phrases does not apply in Hebrew, and proposed an alternate definition. Nguyen et al. (2009) discuss on how to build annotated data for Vietnamese text chunking and how to apply discriminative sequence learning to Vietnamese text chunking. The lack of tools and annotated corpora in non-English languages is clearly an issue.",
                "cite_spans": [
                    {
                        "start": 122,
                        "end": 141,
                        "text": "(Diab et al., 2004)",
                        "ref_id": "BIBREF11"
                    },
                    {
                        "start": 175,
                        "end": 194,
                        "text": "(Chen et al., 2006)",
                        "ref_id": "BIBREF8"
                    },
                    {
                        "start": 197,
                        "end": 219,
                        "text": "Goldberg et al. (2006)",
                        "ref_id": "BIBREF12"
                    },
                    {
                        "start": 374,
                        "end": 394,
                        "text": "Nguyen et al. (2009)",
                        "ref_id": "BIBREF22"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Shallow Parsing",
                "sec_num": "2.1"
            },
            {
                "text": "Following this observation and contrary to the approaches cited above, we make the assumption that no POS tagger is available. To compare our work with previous approaches and to allow extensive experiments, we evaluated our method on English using the standard CoNLL'2000 dataset. The lack of similar annotated corpora in other languages unfortunately constrained the scope of this article to English.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Shallow Parsing",
                "sec_num": "2.1"
            },
            {
                "text": "Unlike van den Bosch and Buchholz (2002) who studied shallow parsing on the basis of lexical features only, we choose to incorporate features related to the traditional notion of part of speech. In this work we apply part-of-speech induction techniques to acquire additional features. This task differs from semi-supervised part-of-speech tagging, where the tagger is trained on an un-tagged corpus but uses a morphosyntactic lexicon giving possible tags for each word (e.g. (Merialdo, 1994) ). Part-of-speech induction is the task of clustering words into word classes (or pseudo-POS) in a completely unsupervised setting. No prior knowledge such as a morphosyntactic lexicon is required. The only resource needed is a relatively large training text corpus. Christodoulopoulos et al. (2010) and (Biemann, 2010) compiled helpful surveys of the domain. Christodoulopoulos et al. (2010) evaluated seven POS induction systems spanning nearly 20 years of work: class-based n-grams (Brown et al., 1992) , class-based n-grams with morphology (Clark, 2003) , Chinese Whispers graph clustering (Biemann, 2006) , Bayesian HMM with Gibbs sampling (Goldwater and Griffiths, 2007) , Bayesian HMM with variational Bayes (Johnson, 2007) , sparsity posteriorregularization HMM (Gra\u00e7a et al., 2009) , and feature-based HMM (Berg-Kirkpatrick et al., 2010) . The performance measures were mainly based on mapping accuracies (with respect to a gold standard) and entropy coefficients. Biemann et al. (2007) and Biemann (2010) succinctly tested their Chinese Whispers algorithm on the shallow parsing task with the English CoNLL'2000 dataset. They showed a significant improvement of the use of unsupervised pseudo part-of-speech tags over the baseline that discarded any POS information. However, their experiments covered several tasks and were not focused on shallow parsing. By contrast, in this article we use an alternate POS induction algorithm and propose a more in-depth evaluation of shallow parsing with POS induction.",
                "cite_spans": [
                    {
                        "start": 475,
                        "end": 491,
                        "text": "(Merialdo, 1994)",
                        "ref_id": "BIBREF20"
                    },
                    {
                        "start": 759,
                        "end": 791,
                        "text": "Christodoulopoulos et al. (2010)",
                        "ref_id": "BIBREF9"
                    },
                    {
                        "start": 852,
                        "end": 884,
                        "text": "Christodoulopoulos et al. (2010)",
                        "ref_id": "BIBREF9"
                    },
                    {
                        "start": 977,
                        "end": 997,
                        "text": "(Brown et al., 1992)",
                        "ref_id": "BIBREF7"
                    },
                    {
                        "start": 1036,
                        "end": 1049,
                        "text": "(Clark, 2003)",
                        "ref_id": "BIBREF10"
                    },
                    {
                        "start": 1086,
                        "end": 1101,
                        "text": "(Biemann, 2006)",
                        "ref_id": "BIBREF2"
                    },
                    {
                        "start": 1137,
                        "end": 1168,
                        "text": "(Goldwater and Griffiths, 2007)",
                        "ref_id": "BIBREF14"
                    },
                    {
                        "start": 1207,
                        "end": 1222,
                        "text": "(Johnson, 2007)",
                        "ref_id": "BIBREF16"
                    },
                    {
                        "start": 1262,
                        "end": 1282,
                        "text": "(Gra\u00e7a et al., 2009)",
                        "ref_id": "BIBREF15"
                    },
                    {
                        "start": 1307,
                        "end": 1338,
                        "text": "(Berg-Kirkpatrick et al., 2010)",
                        "ref_id": "BIBREF1"
                    },
                    {
                        "start": 1466,
                        "end": 1487,
                        "text": "Biemann et al. (2007)",
                        "ref_id": "BIBREF4"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Part-of-Speech Induction",
                "sec_num": "2.2"
            },
            {
                "text": "This section describes the tools and resources used in this work. On the left side of the figure, an unsupervised pseudo-POS tagger is learnt using POS induction techniques. This step requires a raw text corpus as input and produces a list of (word, cluster identifier) pairs which constitute the pseudo-POS lexicon. On the center, a POS tagger is optionally applied to the training and test corpora annotated with shallow parsing tags. Eventually, a supervised training of shallow parsing is conducted on the training set and evaluated on the test set (on the right).",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Resources, Models and Tools",
                "sec_num": "3"
            },
            {
                "text": "The following sections describe the tools and corpora we used for the POS induction step and for the shallow parsing step. This information is summarized in Table 1 .",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 157,
                        "end": 164,
                        "text": "Table 1",
                        "ref_id": null
                    }
                ],
                "eq_spans": [],
                "section": "Resources, Models and Tools",
                "sec_num": "3"
            },
            {
                "text": "Model and Tool Based on Christodoulopoulos et al. 2010, we opted for Clark (2003) 's tool 2 . It was the best performing system in almost every language, and one of the fastest methods. It incorporates morphological information into a distributional clustering algorithm. To our knowledge, it has not yet been evaluated on the shallow parsing task.",
                "cite_spans": [
                    {
                        "start": 69,
                        "end": 81,
                        "text": "Clark (2003)",
                        "ref_id": "BIBREF10"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Unsupervised POS Induction",
                "sec_num": "3.1"
            },
            {
                "text": "The clustering algorithm is based on a cluster bigram model (Ney et al., 1994 ). Assume we have of corpus of size , composed of words . We note the sequence of all words between and . We define a clustering function that deterministically assigns a unique cluster identifier to each word form. The bigram model is a specific type of first-order hidden Markov model where each observation type (word form) is allowed to a single latent class. The model defines the probability of word given history and clustering as:",
                "cite_spans": [
                    {
                        "start": 60,
                        "end": 77,
                        "text": "(Ney et al., 1994",
                        "ref_id": "BIBREF21"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Unsupervised POS Induction",
                "sec_num": "3.1"
            },
            {
                "text": "In our case, the deterministic nature of the clustering makes the likelihood of the model easy to express in terms of word and cluster occurrence counts in the corpus given the clustering. The likelihood is maximized using an exchange algorithm similar to the k-means algorithm. It converges locally until a stopping criterion is reached. It consists in iteratively increasing the likelihood of an initial clustering by moving words one after the other to better clusters.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Unsupervised POS Induction",
                "sec_num": "3.1"
            },
            {
                "text": "The morphological component biases the clustering so as to cluster together morphologically similar words. Clark (2003) models the morphology of words belonging to a same cluster using letter Hidden Markov Models and uses it to define a prior for this cluster in the basic cluster bigram model. The final output consists of a large table giving a unique cluster identifier to each word token, followed by the conditional probability of the word given the cluster. The pseudo POS tagging itself hence comes down to a simple deterministic look-up into the table.",
                "cite_spans": [
                    {
                        "start": 107,
                        "end": 119,
                        "text": "Clark (2003)",
                        "ref_id": "BIBREF10"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Unsupervised POS Induction",
                "sec_num": "3.1"
            },
            {
                "text": "Unlike Biemann (2010) , the number of pseudo-POS clusters should be provided as a parameter of the algorithm. In our experiments, we learnt several pseudo-POS taggers with a number of clusters varying from 10 to 200 (see Section 4.3). Another parameter for Clark's tool is the token cutoff frequency. This threshold assigns all words occurring less than the specified number of times to a particular cluster. This cluster is the one that will be used for tagging unknown words.",
                "cite_spans": [
                    {
                        "start": 7,
                        "end": 21,
                        "text": "Biemann (2010)",
                        "ref_id": "BIBREF3"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Unsupervised POS Induction",
                "sec_num": "3.1"
            },
            {
                "text": "The tool takes a tokenized corpus as input. The corpus chosen for our experiments is newstrain-08, an English monolingual language model training dataset which was provided for the WMT'09 translation task 3 . Its size is approximately 2.5 Gb and 500 million tokens. We set the token cutoff frequency to 50 4 .",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Corpus",
                "sec_num": null
            },
            {
                "text": "Such enormous corpora might not be available for some languages. However we believe that the approach remains valid on smaller corpora. We therefore experimented on a subset of the newstrain-08 corpus restricted to the first million tokens only. To avoid losing too much information, the cutoff frequency was then set to 1: only hapaxes were discarded.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Corpus",
                "sec_num": null
            },
            {
                "text": "Step Tool Corpus Corpus Size POS induction (Clark, 2003) newstrain-08 full 500M tokens ",
                "cite_spans": [
                    {
                        "start": 43,
                        "end": 56,
                        "text": "(Clark, 2003)",
                        "ref_id": "BIBREF10"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Corpus",
                "sec_num": null
            },
            {
                "text": "We follow Sha and Pereira (2003) , who achieved near state-of-the-art results on the English shallow parsing task using Conditional Random Fields (CRFs) (Lafferty et al., 2003) . CRFs allow us to incorporate a large number of features in a flexible way. We used the CRF++ implementation 5 , distributed under the GNU Lesser General Public License and new BSD License. Our feature set is defined as follows. On a 5token window centered on the current token to be classified, we included all lowercased form token unigrams and bigrams, as well as (pseudo) POS tag unigrams, bigrams and trigrams. We also incorporated phrase chunk label bigrams. These features are commonly used for shallow parsing. Finally, we added on the same 5-token window a feature indicating whether the forms begin with a capital, as well as features accounting for the form ending (3 characters) on a window of 3 tokens. The purpose of these features is to facilitate the classification of unknown words by incorporating morphological information into the model.",
                "cite_spans": [
                    {
                        "start": 10,
                        "end": 32,
                        "text": "Sha and Pereira (2003)",
                        "ref_id": "BIBREF23"
                    },
                    {
                        "start": 153,
                        "end": 176,
                        "text": "(Lafferty et al., 2003)",
                        "ref_id": null
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Model and Tool",
                "sec_num": null
            },
            {
                "text": "In some experiments (see Section 4.4), we tried several feature frequency cutoff values, varying from 1 occurrence in the training set to at least 100. The default is set to 1.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Model and Tool",
                "sec_num": null
            },
            {
                "text": "The standard reference corpus for English shallow parsing is the CoNLL'2000 shared task dataset. The CoNLL dataset 6 was automatically derived from a subset of the Wall Street Journal (WSJ) portion of the Penn Treebank. It consists of partitions of the WSJ: sections 15-18 as training data (8936 sentences) and section 20 as test data (2012 sentences). It contains phrase boundaries in the IOB representation, as well as part-ofspeech tags assigned by the Brill tagger 7 . The corpus contains 48 Brill tags.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Corpus",
                "sec_num": null
            },
            {
                "text": "A sentence extracted from the CoNLL training corpus is shown in Table 2 . Here, chunk phrases are separated with horizontal dashed lines. Each chunk type has 2 types of chunk labels: prefix B indicates the beginning of the chunk phrase, and prefix I stands for inside the chunk phrase. Label O represents tokens that do not belong to any phrase. ",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 64,
                        "end": 71,
                        "text": "Table 2",
                        "ref_id": null
                    }
                ],
                "eq_spans": [],
                "section": "Corpus",
                "sec_num": null
            },
            {
                "text": "Our experiments have 4 goals: (i) estimate the gain of POS induction over a system that does not rely on any part-of-speech information; (ii) estimate performance variation depending on the size of the shallow parsing training corpus; (iii) study the influence of the number of pseudo-POS clusters; (iv) observe the system behavior with CRF feature pruning. Our results were evaluated using the Perl script provided by CoNLL 8 .",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Experiments and Results",
                "sec_num": "4"
            },
            {
                "text": "We first evaluated our system in the traditional setting. Our objective is to estimate the potential of POS induction for shallow parsing in the case where no POS tagger is available.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "The CoNLL Shallow Parsing Task",
                "sec_num": "4.1"
            },
            {
                "text": "We conducted three runs using the same CRF feature template (Section 3.2), depending on whether the POS tags are the original Brill tags from the corpus (Brill), our pseudo-POS tags (P50), or no tag at all as a baseline (NoPOS). For this experiment, we used the CoNLL datasets for training and testing. The pseudo-POS tagger was learnt on the full newstrain-08 corpus. We set the number of pseudo-POS tags to 50, which is comparable to the number of Brill tags.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "The CoNLL Shallow Parsing Task",
                "sec_num": "4.1"
            },
            {
                "text": "Detailed results are presented in Table 3 . It shows precision, recall and F-measure for each chunk category. Precision is the percentage of correct phrases over the total number of phrases annotated by the system. Recall is the percentage of correct phrases over the total number of true phrases in the reference. The F-measure is defined as the harmonic mean of precision and recall 9 . Table 3 . Detailed chunking results for the English shallow parsing task",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 34,
                        "end": 41,
                        "text": "Table 3",
                        "ref_id": null
                    },
                    {
                        "start": 389,
                        "end": 396,
                        "text": "Table 3",
                        "ref_id": null
                    }
                ],
                "eq_spans": [],
                "section": "The CoNLL Shallow Parsing Task",
                "sec_num": "4.1"
            },
            {
                "text": "Column found in Table 3 gives the total number of phrases annotated by the system (correct or incorrect). Accuracy is the percentage of correct guesses at the token level.",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 16,
                        "end": 23,
                        "text": "Table 3",
                        "ref_id": null
                    }
                ],
                "eq_spans": [],
                "section": "The CoNLL Shallow Parsing Task",
                "sec_num": "4.1"
            },
            {
                "text": "First, we recall that the state-of-the art system of Lee and Wu (2007) reached a 94.22% Fmeasure using Brill part-of-speech tags. Comparably, our system performs reasonably well when using the same tags (Brill: F-measure 93.90%), considering that it was not subject to any refinements. Without any POS information, the system already achieves a high F-measure (91.34%).",
                "cite_spans": [
                    {
                        "start": 53,
                        "end": 70,
                        "text": "Lee and Wu (2007)",
                        "ref_id": "BIBREF19"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "The CoNLL Shallow Parsing Task",
                "sec_num": "4.1"
            },
            {
                "text": "We observe a 2% overall gain of P50 (Fmeasure 93.48%) over NoPOS, and a drop from Brill inferior to 0.5%. P50 beats Brill on a few categories, although not substantially: conjunctions, particles, and subordinating conjunctions. Its performances are very close to Brill on the 4 most frequent chunk types: adverb phrases, noun phrases, prepositional phrases, and verb phrases. These results incidentally suggest a great potential of the approach for noun phrase chunking, for which state-of-the-art systems reach about 96.8% F-measure (Araujo and Serrano, 2008) .",
                "cite_spans": [
                    {
                        "start": 534,
                        "end": 560,
                        "text": "(Araujo and Serrano, 2008)",
                        "ref_id": "BIBREF0"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "The CoNLL Shallow Parsing Task",
                "sec_num": "4.1"
            },
            {
                "text": "The category of adjective phrases is the most difficult. Although significantly improving the recall of NoPOS, the F-measure for P50 lies exactly between NoPOS and Brill.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "The CoNLL Shallow Parsing Task",
                "sec_num": "4.1"
            },
            {
                "text": "We examined the output test corpus to explain the differences between the unsupervised approach (P50) and the supervised approach (Brill) . The accuracies tell us that on 47,377 tokens, Brill correctly tagged 130 tokens more than P50. Looking specifically at the 2,808 tokens that were unknown to the pseudo-POS tagger, Brill correctly tagged 16 tokens more than P50. Un-known words thus only account for 12% of the 130-token advantage.",
                "cite_spans": [
                    {
                        "start": 130,
                        "end": 137,
                        "text": "(Brill)",
                        "ref_id": null
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Looking into the test corpus",
                "sec_num": null
            },
            {
                "text": "The major sources of disagreement on chunks are shown in Table 4 . These account for more than half the 130-token difference. It shows for instance that in cases where Brill chose B-NP and P50 chose I-NP, Brill was correct for 15 tokens more than P50. We observe that P50 tends to annotate too long noun and verb phrases (P50: incorrect I-NP and I-VP). It also shows more difficulties finding the beginning of verb and adjective phrases (Brill: B-VP and B-ADJP).",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 57,
                        "end": 64,
                        "text": "Table 4",
                        "ref_id": "TABREF4"
                    }
                ],
                "eq_spans": [],
                "section": "Looking into the test corpus",
                "sec_num": null
            },
            {
                "text": "Finally, we examined the Brill parts of speech of misclassified chunks on which Brill and P50 disagreed (see Table 5 ). P50 mostly fails on adjectives and adverbs. Yet it better classifies IN tokens (preposition, subordinating conjunction). Table 5 . Disagreement between Brill and P50 on a few parts of speech",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 109,
                        "end": 116,
                        "text": "Table 5",
                        "ref_id": null
                    },
                    {
                        "start": 241,
                        "end": 248,
                        "text": "Table 5",
                        "ref_id": null
                    }
                ],
                "eq_spans": [],
                "section": "Looking into the test corpus",
                "sec_num": null
            },
            {
                "text": "Corpora such as the CoNLL'2000 dataset are expensive to produce and not yet available for many languages. Therefore we were interested in the evolution of performances with the size of the training corpus. We repeated the experiments from previous section on corpus sizes ranging from 1% (approximately 90 sentences) to 100% (approximately 9000 sentences). All systems were tested on the CoNLL test set. Each experiment was run on 20 different splits of the training corpus (except for the full corpus).",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Training Corpus Size",
                "sec_num": "4.2"
            },
            {
                "text": "In addition, we wanted to take into account the difficulty of compiling large monolingual corpora in some languages. We therefore also tested the method using a much smaller corpus for POS induction training. It contains a subset of 1 million words from the newstrain-08 corpus, as opposed to 500 million for the full corpus (see Section 3.1). In this experiment we also set the number of pseudo-POS clusters to 50. Figure 2 shows the F-measures for varying sizes of the training corpus on the abscissa on a logarithmic scale. The four curves correspond to the following taggers: Brill, pseudo POS tagger trained on the full newstrain-08 corpus (P50), pseudo POS tagger trained on the smaller newstrain corpus (P50m), and no tagger (NoPOS). Each point denotes the mean of the 20 runs. To give an insight of the variation in F-measure across all runs, we added box plots on the P50 curve. Each box is centered on the median of the runs. Half the points lie between its lower and upper sides. The whiskers extend to the most extreme data point which is no more than 1.5 times the height of the box away from the box.",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 416,
                        "end": 424,
                        "text": "Figure 2",
                        "ref_id": "FIGREF2"
                    }
                ],
                "eq_spans": [],
                "section": "Training Corpus Size",
                "sec_num": "4.2"
            },
            {
                "text": "We observe a significant improvement of our POS-induction-based systems over the baseline (NoPOS), especially for smaller training corpora. For a 1% sample of the CoNLL corpus, the Fmeasures are approximately 65% only for the baseline (NoPOS), 78% for the unsupervised systems (P50 and P50m) and 83.5% in the supervised setting (Brill) .",
                "cite_spans": [
                    {
                        "start": 328,
                        "end": 335,
                        "text": "(Brill)",
                        "ref_id": null
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Training Corpus Size",
                "sec_num": "4.2"
            },
            {
                "text": "A 90% F-measure is achieved starting from 10% of the training corpus by Brill, and starting from 20% by P50. More generally, the unsupervised system needs a little more than twice as much annotated data as the supervised system to achieve a similar F-measure.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Training Corpus Size",
                "sec_num": "4.2"
            },
            {
                "text": "With less than 200 sentences (2% sample), the unsupervised system almost achieves 83% Fmeasure, which is only achieved by the baseline starting from 900 sentences (10% sample). Finally, we notice that P50 and P50m get very close results, despite the fact that their pseudo POS taggers have been trained on 500M tokens and 1M tokens respectively. This result validates the approach for the case where only relatively small raw text corpora are available for training the pseudo POS tagger. This finding could be highly valuable for resource-scarce languages.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Training Corpus Size",
                "sec_num": "4.2"
            },
            {
                "text": "Some POS induction algorithms have the advantage over supervised POS tagging to easily adapt the number of word classes to the task.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Number of pseudo-POS clusters",
                "sec_num": "4.3"
            },
            {
                "text": "Biemann (2010) conjectures for the same chunking task that results could be significantly improved with a smaller cluster number. To verify this hypothesis, we trained several pseudo-POS taggers with a cluster number between 10 and 200. Similarly to the experiments reported in the previous section, we evaluate the systems on varying sizes of the CoNLL training corpus 10 .",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Number of pseudo-POS clusters",
                "sec_num": "4.3"
            },
            {
                "text": "Results are presented in Figure 3 . From 10 to 50 clusters, performances increase with the number of clusters for all sizes of the training corpus. By contrast, P100 and P200 only improve over P50 for corpus sizes superior to 10%, which represents about 900 sentences. This can be attributed to the sparseness of pseudo POS tags in small training sets. We conclude that for small training corpus sizes, the number of pseudo-POS tags should be chosen carefully. On the whole, the F-measures vary in a 5.3% interval for a 1% sample, and in a 1.1% interval for the full corpus. The F-measures obtained using the full training dataset are: 93.6 (P200), 93.34 (P100), 93.48 (P50), 92.97 (P30), 92.72 (P20), and 92.53 (P10). They were 91.34 for the baseline and 93.9 for Brill (see Table 3 ): even 10 pseudo-POS clusters are sufficient to beat the baseline, and this is valid for all sizes of the training corpus.",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 25,
                        "end": 33,
                        "text": "Figure 3",
                        "ref_id": "FIGREF3"
                    },
                    {
                        "start": 776,
                        "end": 783,
                        "text": "Table 3",
                        "ref_id": null
                    }
                ],
                "eq_spans": [],
                "section": "Number of pseudo-POS clusters",
                "sec_num": "4.3"
            },
            {
                "text": "In the last experiment we tested CRF feature pruning. The idea is to select the features appearing at least times in the training corpus. This was motivated by Goldberg and Elhadad (2009) , who explored the importance of lexical features in shallow parsing and other sequence labeling tasks. The performance of their anchored SVM system only decreased from 93.69% to 93.12% with heavy pruning ( ), while the baseline dropped from 93.73% to 91.83%. In addition, they showed comparable performances between heavily pruned models and full models when tested on out-of-domain data.",
                "cite_spans": [
                    {
                        "start": 160,
                        "end": 187,
                        "text": "Goldberg and Elhadad (2009)",
                        "ref_id": "BIBREF13"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "CRF Feature Selection",
                "sec_num": "4.4"
            },
            {
                "text": "As in Goldberg and Elhadad (2009) , we set the feature frequency threshold to values ranging from 1 to 100. Each experiment was run only once using the whole CoNLL training corpus. Figure 4 shows that the supervised part-ofspeech tagging system is the most robust to feature pruning. It loses less than 1% for . In comparison, the baseline NoPOS loses 4.3%. This indicates a strong dependency to the domain of the training corpus. The unsupervised systems resist quite well to feature pruning for , losing 1.1% and 1.6% F-measure for 200 and 50 clusters. P50 models have around 350,000 features for and 5,100 features only for , while the baseline keeps from 270,000 to 2,200 features.",
                "cite_spans": [
                    {
                        "start": 6,
                        "end": 33,
                        "text": "Goldberg and Elhadad (2009)",
                        "ref_id": "BIBREF13"
                    }
                ],
                "ref_spans": [
                    {
                        "start": 181,
                        "end": 189,
                        "text": "Figure 4",
                        "ref_id": "FIGREF4"
                    }
                ],
                "eq_spans": [],
                "section": "CRF Feature Selection",
                "sec_num": "4.4"
            },
            {
                "text": "As in Goldberg and Elhadad (2009) , it will be interesting to test the pruned models on out-ofdomain corpora, and see how POS inductionbased systems behave in comparison to systems relying on accurate part-of-speech information.",
                "cite_spans": [
                    {
                        "start": 6,
                        "end": 33,
                        "text": "Goldberg and Elhadad (2009)",
                        "ref_id": "BIBREF13"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "CRF Feature Selection",
                "sec_num": "4.4"
            },
            {
                "text": "In this paper, we study the contribution of partof-speech induction to shallow parsing. The general context of our work is the automatic treatment of minority languages for which few linguistic resources are available, though we experimented on English only. Our constraint is the lack of any POS tagger. The experiments were carried out on the standard English CoNLL'2000 dataset, which allowed extensive experiments and explicit comparison to related work. We used Clark (2003) 's tool for the POS induction step and CRF++ for the shallow parsing train and test steps. Results show a significant advantage of POS-induction-based systems over a baseline which uses lexical features only.",
                "cite_spans": [
                    {
                        "start": 467,
                        "end": 479,
                        "text": "Clark (2003)",
                        "ref_id": "BIBREF10"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Conclusion and Future Work",
                "sec_num": "5"
            },
            {
                "text": "In the future, we intend to apply these techniques to both shallow parsing and noun phrase chunking for minority languages. This will require the constitution of annotated corpora for training and testing. This paper shows that, for English, a corpus of 1 M words for POS induction, as well as a few hundred annotated sentences are enough to obtain interesting performances. If this could be proved on other lan-guages, it could be a very interesting point to manage NLP for resource-scarce languages.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Conclusion and Future Work",
                "sec_num": "5"
            },
            {
                "text": "The standard English shallow parsing corpus contains around 50 distinct POS tags and only 10 chunk types.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "",
                "sec_num": null
            },
            {
                "text": "Available on Alexander Clark's Web page: http://www.cs.rhul.ac.uk/home/alexc/pos2.tar.gz",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "",
                "sec_num": null
            },
            {
                "text": "The corpus is available at: http://statmt.org/wmt09/training-monolingual.tar4 Other parameter values are \"-s 5\" (number of HMM states) and \"-i 20\" (stopping criterion: maximum number of iterations)",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "",
                "sec_num": null
            },
            {
                "text": "Available at http://crfpp.sourceforge.net/ 6 See http://www.clips.ua.ac.be/conll2000/chunking/ 7 The original manually annotated tags from WSJ were discarded in order to make the CoNLL task more realistic.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "",
                "sec_num": null
            },
            {
                "text": "http://www.cnts.ua.ac.be/conll2000/chunking/conlleval.txt 9 with",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "",
                "sec_num": null
            },
            {
                "text": "Again, 20 runs for each size of the training corpus",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "",
                "sec_num": null
            }
        ],
        "back_matter": [
            {
                "text": "The research leading to these results has received funding from the European Community's Seventh Framework Programme (FP7/2007-2013 under Grant Agreement n\u00b0 248005 11 .",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Acknowledgments",
                "sec_num": null
            }
        ],
        "bib_entries": {
            "BIBREF0": {
                "ref_id": "b0",
                "title": "Highly accurate error-driven method for noun phrase detection",
                "authors": [
                    {
                        "first": "L",
                        "middle": [],
                        "last": "Araujo",
                        "suffix": ""
                    },
                    {
                        "first": "J",
                        "middle": [
                            "I"
                        ],
                        "last": "Serrano",
                        "suffix": ""
                    }
                ],
                "year": 2008,
                "venue": "Pattern Recognition Letters",
                "volume": "29",
                "issue": "4",
                "pages": "547--557",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Araujo, L., & Serrano, J. I. (2008). Highly accurate error-driven method for noun phrase detection. Pattern Recognition Letters, 29(4), 547-557.",
                "links": null
            },
            "BIBREF1": {
                "ref_id": "b1",
                "title": "Painless unsupervised learning with features",
                "authors": [
                    {
                        "first": "T",
                        "middle": [],
                        "last": "Berg-Kirkpatrick",
                        "suffix": ""
                    },
                    {
                        "first": "A",
                        "middle": [],
                        "last": "Bouchard-C\u00f4t\u00e9",
                        "suffix": ""
                    },
                    {
                        "first": "J",
                        "middle": [],
                        "last": "Denero",
                        "suffix": ""
                    },
                    {
                        "first": "D",
                        "middle": [],
                        "last": "Klein",
                        "suffix": ""
                    }
                ],
                "year": 2010,
                "venue": "Proceedings of HLT-NAACL 2010",
                "volume": "",
                "issue": "",
                "pages": "582--590",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Berg-Kirkpatrick, T., Bouchard-C\u00f4t\u00e9, A., DeNero, J., & Klein, D. (2010). Painless unsupervised learning with features. Proceedings of HLT-NAACL 2010 (pp. 582-590).",
                "links": null
            },
            "BIBREF2": {
                "ref_id": "b2",
                "title": "Unsupervised Part-of-Speech Tagging Employing Efficient Graph Clustering",
                "authors": [
                    {
                        "first": "C",
                        "middle": [],
                        "last": "Biemann",
                        "suffix": ""
                    }
                ],
                "year": 2006,
                "venue": "Proceedings of ACL-CoLing 2006 -Student Research Workshop",
                "volume": "",
                "issue": "",
                "pages": "7--12",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Biemann, C. (2006). Unsupervised Part-of-Speech Tagging Employing Efficient Graph Clustering. Proceedings of ACL-CoLing 2006 -Student Re- search Workshop (pp. 7-12).",
                "links": null
            },
            "BIBREF3": {
                "ref_id": "b3",
                "title": "Unsupervised Part-of-Speech Tagging in the Large",
                "authors": [
                    {
                        "first": "C",
                        "middle": [],
                        "last": "Biemann",
                        "suffix": ""
                    }
                ],
                "year": 2010,
                "venue": "Research on Language and Computation",
                "volume": "7",
                "issue": "2-4",
                "pages": "101--135",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Biemann, C. (2010). Unsupervised Part-of-Speech Tagging in the Large. Research on Language and Computation, 7(2-4), 101-135.",
                "links": null
            },
            "BIBREF4": {
                "ref_id": "b4",
                "title": "Unsupervised Part of Speech Tagging Supporting Supervised Methods",
                "authors": [
                    {
                        "first": "C",
                        "middle": [],
                        "last": "Biemann",
                        "suffix": ""
                    },
                    {
                        "first": "C",
                        "middle": [],
                        "last": "Giuliano",
                        "suffix": ""
                    },
                    {
                        "first": "A",
                        "middle": [],
                        "last": "Gliozzo",
                        "suffix": ""
                    }
                ],
                "year": 2007,
                "venue": "Proceedings of RANLP-07",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Biemann, C., Giuliano, C., & Gliozzo, A. (2007). Un- supervised Part of Speech Tagging Supporting Su- pervised Methods. Proceedings of RANLP-07.",
                "links": null
            },
            "BIBREF5": {
                "ref_id": "b5",
                "title": "Shallow parsing on the basis of words only",
                "authors": [
                    {
                        "first": "A",
                        "middle": [],
                        "last": "Van Den Bosch",
                        "suffix": ""
                    },
                    {
                        "first": "S",
                        "middle": [],
                        "last": "Buchholz",
                        "suffix": ""
                    }
                ],
                "year": 2001,
                "venue": "Proceedings of ACL\u02bc02",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "van den Bosch, A., & Buchholz, S. (2001). Shallow parsing on the basis of words only. Proceedings of ACL\u02bc02 (p. 433).",
                "links": null
            },
            "BIBREF6": {
                "ref_id": "b6",
                "title": "Transformation-based error-driven learning and natural language processing: a case study in part-of-speech tagging",
                "authors": [
                    {
                        "first": "E",
                        "middle": [],
                        "last": "Brill",
                        "suffix": ""
                    }
                ],
                "year": 1995,
                "venue": "Computational Linguistics",
                "volume": "21",
                "issue": "4",
                "pages": "543--565",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Brill, E. (1995). Transformation-based error-driven learning and natural language processing: a case study in part-of-speech tagging. Computational Linguistics, 21(4), 543-565.",
                "links": null
            },
            "BIBREF7": {
                "ref_id": "b7",
                "title": "Class-Based n-gram Models of Natural Language",
                "authors": [
                    {
                        "first": "P",
                        "middle": [
                            "F"
                        ],
                        "last": "Brown",
                        "suffix": ""
                    },
                    {
                        "first": "P",
                        "middle": [
                            "V"
                        ],
                        "last": "Desouza",
                        "suffix": ""
                    },
                    {
                        "first": "R",
                        "middle": [
                            "L"
                        ],
                        "last": "Mercer",
                        "suffix": ""
                    },
                    {
                        "first": "V",
                        "middle": [
                            "J D"
                        ],
                        "last": "Pietra",
                        "suffix": ""
                    },
                    {
                        "first": "J",
                        "middle": [
                            "C"
                        ],
                        "last": "Lai",
                        "suffix": ""
                    }
                ],
                "year": 1992,
                "venue": "Computational Linguistics",
                "volume": "18",
                "issue": "4",
                "pages": "467--479",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Brown, P. F., DeSouza, P. V., Mercer, R. L., Pietra, V. J. D., & Lai, J. C. (1992). Class-Based n-gram Models of Natural Language. Computational Lin- guistics, 18(4), 467-479.",
                "links": null
            },
            "BIBREF8": {
                "ref_id": "b8",
                "title": "An Empirical Study of Chinese Chunking",
                "authors": [
                    {
                        "first": "W",
                        "middle": [],
                        "last": "Chen",
                        "suffix": ""
                    },
                    {
                        "first": "Y",
                        "middle": [],
                        "last": "Zhang",
                        "suffix": ""
                    },
                    {
                        "first": "H",
                        "middle": [],
                        "last": "Isahara",
                        "suffix": ""
                    }
                ],
                "year": 2006,
                "venue": "Proceedings of COLING/ACL 2006 Poster Sessions",
                "volume": "",
                "issue": "",
                "pages": "97--104",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Chen, W., Zhang, Y., & Isahara, H. (2006). An Em- pirical Study of Chinese Chunking. Proceedings of COLING/ACL 2006 Poster Sessions (pp. 97-104).",
                "links": null
            },
            "BIBREF9": {
                "ref_id": "b9",
                "title": "Two decades of unsupervised POS induction: how far have we come?",
                "authors": [
                    {
                        "first": "C",
                        "middle": [],
                        "last": "Christodoulopoulos",
                        "suffix": ""
                    },
                    {
                        "first": "S",
                        "middle": [],
                        "last": "Goldwater",
                        "suffix": ""
                    },
                    {
                        "first": "M",
                        "middle": [],
                        "last": "Steedman",
                        "suffix": ""
                    }
                ],
                "year": 2010,
                "venue": "Proceedings of EMNLP 2010",
                "volume": "",
                "issue": "",
                "pages": "575--584",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Christodoulopoulos, C., Goldwater, S., & Steedman, M. (2010). Two decades of unsupervised POS in- duction: how far have we come? Proceedings of EMNLP 2010 (pp. 575-584).",
                "links": null
            },
            "BIBREF10": {
                "ref_id": "b10",
                "title": "Combining distributional and morphological information for part of speech induction",
                "authors": [
                    {
                        "first": "A",
                        "middle": [],
                        "last": "Clark",
                        "suffix": ""
                    }
                ],
                "year": 2003,
                "venue": "Proceedings of EACL 2003",
                "volume": "",
                "issue": "",
                "pages": "59--66",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Clark, A. (2003). Combining distributional and mor- phological information for part of speech induc- tion. Proceedings of EACL 2003 (pp. 59-66).",
                "links": null
            },
            "BIBREF11": {
                "ref_id": "b11",
                "title": "Automatic Tagging of Arabic Text: From Raw",
                "authors": [
                    {
                        "first": "M",
                        "middle": [],
                        "last": "Diab",
                        "suffix": ""
                    },
                    {
                        "first": "K",
                        "middle": [],
                        "last": "Hacioglu",
                        "suffix": ""
                    },
                    {
                        "first": "D",
                        "middle": [],
                        "last": "Jurafsky",
                        "suffix": ""
                    }
                ],
                "year": 2004,
                "venue": "Proceedings of HLT-NAACL 2004: Short Papers",
                "volume": "",
                "issue": "",
                "pages": "149--152",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Diab, M., Hacioglu, K., & Jurafsky, D. (2004). Auto- matic Tagging of Arabic Text: From Raw Text to 11 http://www.ttc-project.eu Base Phrase Chunks. Proceedings of HLT-NAACL 2004: Short Papers (p. 149-152).",
                "links": null
            },
            "BIBREF12": {
                "ref_id": "b12",
                "title": "Noun phrase chunking in Hebrew: influence of lexical and morphological features",
                "authors": [
                    {
                        "first": "Y",
                        "middle": [],
                        "last": "Goldberg",
                        "suffix": ""
                    },
                    {
                        "first": "M",
                        "middle": [],
                        "last": "Adler",
                        "suffix": ""
                    },
                    {
                        "first": "M",
                        "middle": [],
                        "last": "Elhadad",
                        "suffix": ""
                    }
                ],
                "year": 2006,
                "venue": "Proceedings of ACL-CoLing",
                "volume": "",
                "issue": "",
                "pages": "689--696",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Goldberg, Y., Adler, M., & Elhadad, M. (2006). Noun phrase chunking in Hebrew: influence of lexical and morphological features. Proceedings of ACL- CoLing 2006 (pp. 689-696).",
                "links": null
            },
            "BIBREF13": {
                "ref_id": "b13",
                "title": "On the role of lexical features in sequence labeling",
                "authors": [
                    {
                        "first": "Y",
                        "middle": [],
                        "last": "Goldberg",
                        "suffix": ""
                    },
                    {
                        "first": "M",
                        "middle": [],
                        "last": "Elhadad",
                        "suffix": ""
                    }
                ],
                "year": 2009,
                "venue": "Proceedings of EMNLP 2009",
                "volume": "",
                "issue": "",
                "pages": "1142--1151",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Goldberg, Y., & Elhadad, M. (2009). On the role of lexical features in sequence labeling. Proceedings of EMNLP 2009 (pp. 1142-1151).",
                "links": null
            },
            "BIBREF14": {
                "ref_id": "b14",
                "title": "A fully Bayesian approach to unsupervised part-of-speech tagging",
                "authors": [
                    {
                        "first": "S",
                        "middle": [],
                        "last": "Goldwater",
                        "suffix": ""
                    },
                    {
                        "first": "T",
                        "middle": [
                            "L"
                        ],
                        "last": "Griffiths",
                        "suffix": ""
                    }
                ],
                "year": 2007,
                "venue": "Proceedings of ACL\u02bc07",
                "volume": "",
                "issue": "",
                "pages": "744--751",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Goldwater, S., & Griffiths, T. L. (2007). A fully Bayesian approach to unsupervised part-of-speech tagging. Proceedings of ACL\u02bc07 (pp. 744-751).",
                "links": null
            },
            "BIBREF15": {
                "ref_id": "b15",
                "title": "Posterior vs. Parameter Sparsity in Latent Variable Models",
                "authors": [
                    {
                        "first": "J",
                        "middle": [],
                        "last": "Gra\u00e7a",
                        "suffix": ""
                    },
                    {
                        "first": "K",
                        "middle": [],
                        "last": "Ganchev",
                        "suffix": ""
                    },
                    {
                        "first": "B",
                        "middle": [],
                        "last": "Taskar",
                        "suffix": ""
                    },
                    {
                        "first": "F",
                        "middle": [],
                        "last": "Pereira",
                        "suffix": ""
                    }
                ],
                "year": 2009,
                "venue": "Proc. of NIPS",
                "volume": "",
                "issue": "",
                "pages": "664--672",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Gra\u00e7a, J., Ganchev, K., Taskar, B., & Pereira, F. (2009). Posterior vs. Parameter Sparsity in Latent Variable Models. Proc. of NIPS (p. 664-672).",
                "links": null
            },
            "BIBREF16": {
                "ref_id": "b16",
                "title": "Why Doesn\u02bct EM Find Good HMM POS-Taggers? Proceedings of EMNLP-CoNLL",
                "authors": [
                    {
                        "first": "M",
                        "middle": [],
                        "last": "Johnson",
                        "suffix": ""
                    }
                ],
                "year": 2007,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Johnson, M. (2007). Why Doesn\u02bct EM Find Good HMM POS-Taggers? Proceedings of EMNLP- CoNLL 2007.",
                "links": null
            },
            "BIBREF17": {
                "ref_id": "b17",
                "title": "Chunking with support vector machines",
                "authors": [
                    {
                        "first": "T",
                        "middle": [],
                        "last": "Kudo",
                        "suffix": ""
                    },
                    {
                        "first": "Y",
                        "middle": [],
                        "last": "Matsumoto",
                        "suffix": ""
                    }
                ],
                "year": 2001,
                "venue": "Proceedings of NAACL 2001",
                "volume": "",
                "issue": "",
                "pages": "1--8",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Kudo, T., & Matsumoto, Y. (2001). Chunking with support vector machines. Proceedings of NAACL 2001 (pp. 1-8).",
                "links": null
            },
            "BIBREF18": {
                "ref_id": "b18",
                "title": "Conditional random fields: Probabilistic models for segmenting and labeling sequence data",
                "authors": [
                    {
                        "first": "J",
                        "middle": [],
                        "last": "Lafferty",
                        "suffix": ""
                    },
                    {
                        "first": "A",
                        "middle": [],
                        "last": "Mccallum",
                        "suffix": ""
                    },
                    {
                        "first": "F",
                        "middle": [],
                        "last": "Pereira",
                        "suffix": ""
                    }
                ],
                "year": 2001,
                "venue": "Proceedings of ICML\u02bc01",
                "volume": "",
                "issue": "",
                "pages": "282--289",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Lafferty, J., McCallum, A., & Pereira, F. (2001). Conditional random fields: Probabilistic models for segmenting and labeling sequence data. Proceed- ings of ICML\u02bc01 (pp. 282-289)",
                "links": null
            },
            "BIBREF19": {
                "ref_id": "b19",
                "title": "A robust multilingual portable phrase chunking system",
                "authors": [
                    {
                        "first": "Y.-S",
                        "middle": [],
                        "last": "Lee",
                        "suffix": ""
                    },
                    {
                        "first": "Y.-C",
                        "middle": [],
                        "last": "Wu",
                        "suffix": ""
                    }
                ],
                "year": 2007,
                "venue": "Expert Systems with Applications",
                "volume": "33",
                "issue": "3",
                "pages": "590--599",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Lee, Y.-S., & Wu, Y.-C. (2007). A robust multilin- gual portable phrase chunking system. Expert Sys- tems with Applications, 33(3), 590-599.",
                "links": null
            },
            "BIBREF20": {
                "ref_id": "b20",
                "title": "Tagging English text with a probabilistic model",
                "authors": [
                    {
                        "first": "B",
                        "middle": [],
                        "last": "Merialdo",
                        "suffix": ""
                    }
                ],
                "year": 1994,
                "venue": "Computational Linguistics",
                "volume": "20",
                "issue": "2",
                "pages": "155--171",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Merialdo, B. (1994). Tagging English text with a probabilistic model. Computational Linguistics, 20(2), 155--171. MIT Press.",
                "links": null
            },
            "BIBREF21": {
                "ref_id": "b21",
                "title": "On structuring probabilistic dependencies in stochastic language modelling",
                "authors": [
                    {
                        "first": "H",
                        "middle": [],
                        "last": "Ney",
                        "suffix": ""
                    },
                    {
                        "first": "U",
                        "middle": [],
                        "last": "Essen",
                        "suffix": ""
                    },
                    {
                        "first": "R",
                        "middle": [],
                        "last": "Kneser",
                        "suffix": ""
                    }
                ],
                "year": 1994,
                "venue": "Computer Speech and Language",
                "volume": "8",
                "issue": "1",
                "pages": "1--38",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Ney, H., Essen, U., & Kneser, R. (1994). On structur- ing probabilistic dependencies in stochastic lan- guage modelling. Computer Speech and Language, 8(1), 1-38.",
                "links": null
            },
            "BIBREF22": {
                "ref_id": "b22",
                "title": "An empirical study of Vietnamese noun phrase chunking with discriminative sequence models",
                "authors": [
                    {
                        "first": "L",
                        "middle": [
                            "M"
                        ],
                        "last": "Nguyen",
                        "suffix": ""
                    },
                    {
                        "first": "H",
                        "middle": [
                            "T"
                        ],
                        "last": "Nguyen",
                        "suffix": ""
                    },
                    {
                        "first": "P",
                        "middle": [
                            "T"
                        ],
                        "last": "Nguyen",
                        "suffix": ""
                    },
                    {
                        "first": "T",
                        "middle": [
                            "B"
                        ],
                        "last": "Ho",
                        "suffix": ""
                    },
                    {
                        "first": "A",
                        "middle": [],
                        "last": "Shimazu",
                        "suffix": ""
                    }
                ],
                "year": 2009,
                "venue": "Proc. of the 7th Workshop on Asian Language Resources",
                "volume": "",
                "issue": "",
                "pages": "9--16",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Nguyen, L. M., Nguyen, H. T., Nguyen, P. T., Ho, T. B., & Shimazu, A. (2009). An empirical study of Vietnamese noun phrase chunking with discrimina- tive sequence models. Proc. of the 7th Workshop on Asian Language Resources (pp. 9-16).",
                "links": null
            },
            "BIBREF23": {
                "ref_id": "b23",
                "title": "Shallow parsing with conditional random fields",
                "authors": [
                    {
                        "first": "F",
                        "middle": [],
                        "last": "Sha",
                        "suffix": ""
                    },
                    {
                        "first": "F",
                        "middle": [],
                        "last": "Pereira",
                        "suffix": ""
                    }
                ],
                "year": 2003,
                "venue": "Proceedings of NAACL 2003",
                "volume": "",
                "issue": "",
                "pages": "134--141",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Sha, F., & Pereira, F. (2003). Shallow parsing with conditional random fields. Proceedings of NAACL 2003 (pp. 134-141).",
                "links": null
            },
            "BIBREF24": {
                "ref_id": "b24",
                "title": "Voting Between Multiple Data Representations for Text Chunking",
                "authors": [
                    {
                        "first": "H",
                        "middle": [],
                        "last": "Shen",
                        "suffix": ""
                    },
                    {
                        "first": "A",
                        "middle": [],
                        "last": "Sarkar",
                        "suffix": ""
                    }
                ],
                "year": 2005,
                "venue": "Advances in Artificial Intelligence",
                "volume": "3501",
                "issue": "",
                "pages": "389--400",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Shen, H., & Sarkar, A. (2005). Voting Between Mul- tiple Data Representations for Text Chunking. In Advances in Artificial Intelligence (Vol. 3501, pp. 389-400). Springer Berlin / Heidelberg.",
                "links": null
            },
            "BIBREF25": {
                "ref_id": "b25",
                "title": "Noun Phrase Recognition by System Combination",
                "authors": [
                    {
                        "first": "Tjong",
                        "middle": [],
                        "last": "Kim Sang",
                        "suffix": ""
                    },
                    {
                        "first": "E",
                        "middle": [
                            "F"
                        ],
                        "last": "",
                        "suffix": ""
                    }
                ],
                "year": 2000,
                "venue": "Proceedings of NAACL 2000",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Tjong Kim Sang, E. F. (2000). Noun Phrase Recogni- tion by System Combination. Proceedings of NAACL 2000 (p. 6).",
                "links": null
            },
            "BIBREF26": {
                "ref_id": "b26",
                "title": "Introduction to the CoNLL-2000 shared task",
                "authors": [
                    {
                        "first": "Tjong",
                        "middle": [],
                        "last": "Kim Sang",
                        "suffix": ""
                    },
                    {
                        "first": "E",
                        "middle": [
                            "F"
                        ],
                        "last": "Buchholz",
                        "suffix": ""
                    },
                    {
                        "first": "S",
                        "middle": [],
                        "last": "",
                        "suffix": ""
                    }
                ],
                "year": 2000,
                "venue": "Proceedings of CoNLL",
                "volume": "",
                "issue": "",
                "pages": "127--132",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Tjong Kim Sang, E. F., & Buchholz, S. (2000). Intro- duction to the CoNLL-2000 shared task. Proceed- ings of CoNLL 2000 -LLL 2000 (pp. 127-132).",
                "links": null
            }
        },
        "ref_entries": {
            "FIGREF0": {
                "text": "Figure 1depicts the global organization of our modules.",
                "num": null,
                "uris": null,
                "type_str": "figure"
            },
            "FIGREF1": {
                "text": "Overview of the system",
                "num": null,
                "uris": null,
                "type_str": "figure"
            },
            "FIGREF2": {
                "text": "F-measure depending on the training corpus sample size and on the POS tagger",
                "num": null,
                "uris": null,
                "type_str": "figure"
            },
            "FIGREF3": {
                "text": "F-measure depending on the CoNLL'2000 training corpus sample size for a varying number of pseudo-POS clusters",
                "num": null,
                "uris": null,
                "type_str": "figure"
            },
            "FIGREF4": {
                "text": "F-measure for various CRF feature pruning thresholds",
                "num": null,
                "uris": null,
                "type_str": "figure"
            },
            "TABREF4": {
                "num": null,
                "text": "",
                "type_str": "table",
                "content": "<table><tr><td colspan=\"4\">Disagreement between Brill and P50</td></tr><tr><td/><td>on a few chunks</td><td/><td/></tr><tr><td>Brill POS</td><td colspan=\"3\">Brill correct P50 correct Diff</td></tr><tr><td>JJ</td><td>87</td><td>49</td><td>38</td></tr><tr><td>RB</td><td>74</td><td>46</td><td>28</td></tr><tr><td>TO</td><td>34</td><td>21</td><td>13</td></tr><tr><td>VBG</td><td>37</td><td>26</td><td>11</td></tr><tr><td>VB</td><td>22</td><td>13</td><td>9</td></tr><tr><td>CC</td><td>56</td><td>49</td><td>7</td></tr><tr><td>IN</td><td>39</td><td colspan=\"2\">53 -14</td></tr></table>",
                "html": null
            }
        }
    }
}