File size: 83,328 Bytes
6fa4bc9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
{
    "paper_id": "R11-1004",
    "header": {
        "generated_with": "S2ORC 1.0.0",
        "date_generated": "2023-01-19T15:04:49.901414Z"
    },
    "title": "Extracting Relations Within and Across Sentences",
    "authors": [
        {
            "first": "Kumutha",
            "middle": [],
            "last": "Swampillai",
            "suffix": "",
            "affiliation": {
                "laboratory": "",
                "institution": "Sheffield University",
                "location": {
                    "postCode": "S1 4DP",
                    "country": "UK"
                }
            },
            "email": ""
        },
        {
            "first": "Mark",
            "middle": [],
            "last": "Stevenson",
            "suffix": "",
            "affiliation": {
                "laboratory": "",
                "institution": "Sheffield University",
                "location": {
                    "postCode": "S1 4DP",
                    "country": "UK"
                }
            },
            "email": ""
        }
    ],
    "year": "",
    "venue": null,
    "identifiers": {},
    "abstract": "Previous work on relation extraction has focussed on identifying relationships between entities that occur in the same sentence (intra-sentential relations) rather than between entities in different sentences (inter-sentential relations) despite previous research having shown that intersentential relations commonly occur in information extraction corpora. This paper describes a SVM-based approach to relation extraction that is applied to both types. Adapted features and techniques for counteracting bias in SVM models are used to deal with specific issues that arise in the inter-sentential case. It was found that the structured features used for intrasentential relation extraction can be easily adapted for the inter-sentential case and provides comparable performance.",
    "pdf_parse": {
        "paper_id": "R11-1004",
        "_pdf_hash": "",
        "abstract": [
            {
                "text": "Previous work on relation extraction has focussed on identifying relationships between entities that occur in the same sentence (intra-sentential relations) rather than between entities in different sentences (inter-sentential relations) despite previous research having shown that intersentential relations commonly occur in information extraction corpora. This paper describes a SVM-based approach to relation extraction that is applied to both types. Adapted features and techniques for counteracting bias in SVM models are used to deal with specific issues that arise in the inter-sentential case. It was found that the structured features used for intrasentential relation extraction can be easily adapted for the inter-sentential case and provides comparable performance.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Abstract",
                "sec_num": null
            }
        ],
        "body_text": [
            {
                "text": "Relation extraction is an established subfield of information extraction concerned with extracting related pairs of entities from text. The majority of research has been applied to extracting relations within single sentences (intra-sentential relations), examples include (Chieu and Ng, 2002; Culotta and Sorensen, 2004; Sekine, 2006; Banko and Etzioni, 2008) . However, an analysis of the MUC6 corpus (Swampillai and Stevenson, 2010) showed that 28.5% of the relations occur between entities in different sentences (inter-sentential relations). This paper describes a SVM-based approach which is applied to the extraction of both inter-and intra-sentential relations. A number of challenges are faced when extract-ing inter-sentential relations. The structured features, that are based on parse trees and have been successfully used for intra-sentential relation extraction, do not naturally apply over multiple sentences. The limited research published on intersentential relation extraction (Roberts et al., 2008; Hirano et al., 2010) does not employ parse tree features. We address this problem by introducing new structured features (see section 3.2) for the inter-sentential case. There is also a greater data sparsity issue when learning extraction models for inter-sentential relations due in part to the smaller number of relations expressed inter-sententially. We investigate a learning approach called threshold adjustment (Shanahan and Roma, 2003) to counter-act the imbalance in the data. The remainder of the paper is organised as follows: Section 2 discusses previous work on relation extraction. Section 3 describes a relation extraction system suitable for both inter-and intrasentential relation extraction that uses both flat and structures features. The MUC6 relation extraction task is described in Section 4. Section 5 investigates whether the bias in the relation extraction SVM models can be mitigated using threshold adaption. Section 6 reports the results of the intersentential and intra-sentential relation extraction system described. Finally, Section 7 concludes the paper with a discussion of the effectiveness of a composite kernel approach to inter-sentential relation extraction.",
                "cite_spans": [
                    {
                        "start": 273,
                        "end": 293,
                        "text": "(Chieu and Ng, 2002;",
                        "ref_id": "BIBREF3"
                    },
                    {
                        "start": 294,
                        "end": 321,
                        "text": "Culotta and Sorensen, 2004;",
                        "ref_id": "BIBREF4"
                    },
                    {
                        "start": 322,
                        "end": 335,
                        "text": "Sekine, 2006;",
                        "ref_id": "BIBREF16"
                    },
                    {
                        "start": 336,
                        "end": 360,
                        "text": "Banko and Etzioni, 2008)",
                        "ref_id": "BIBREF1"
                    },
                    {
                        "start": 403,
                        "end": 435,
                        "text": "(Swampillai and Stevenson, 2010)",
                        "ref_id": "BIBREF19"
                    },
                    {
                        "start": 995,
                        "end": 1017,
                        "text": "(Roberts et al., 2008;",
                        "ref_id": "BIBREF14"
                    },
                    {
                        "start": 1018,
                        "end": 1038,
                        "text": "Hirano et al., 2010)",
                        "ref_id": "BIBREF5"
                    },
                    {
                        "start": 1435,
                        "end": 1460,
                        "text": "(Shanahan and Roma, 2003)",
                        "ref_id": "BIBREF17"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "The majority of the work on relation extraction has focused on intra-sentential relations and there has been limited research on inter-sentential relation extraction. Roberts et al. (2008) applies an SVM approach to identify inter-sentential relations in the biomedical domain where flat features are used to represent the relations. A low performance is achieved on the inter-sentential relations alone (f-measure < 0.19) but they were able to improve overall performance by combining their inter-and intra-sentential data sets. In addition, Roberts et al. (2008) give a distribution of inter-sentential relations in their corpus where the number of inter-sentential relations occurring in a pair of sentences is inversely proportional to the number of intervening sentences with 42.9% of inter-sentential relations present in consecutive sentences.",
                "cite_spans": [
                    {
                        "start": 167,
                        "end": 188,
                        "text": "Roberts et al. (2008)",
                        "ref_id": "BIBREF14"
                    },
                    {
                        "start": 543,
                        "end": 564,
                        "text": "Roberts et al. (2008)",
                        "ref_id": "BIBREF14"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Related Work",
                "sec_num": "2"
            },
            {
                "text": "More recently Hirano et al. (2010) have reported that 12% of the relations in their Japanese news corpus are inter-sentential. It learns extraction patterns using a bootstrapped classification algorithm. A novel feature is created for intersentential relations where a tree is constructed to represent a possible relation based on a salient referent list, i.e. a map of the references in the document. The tree contains the two entities and the proposed relation type which is augmented with entity class and POS. An f-measure of 51% is reported for inter-sentential relations.",
                "cite_spans": [
                    {
                        "start": 14,
                        "end": 34,
                        "text": "Hirano et al. (2010)",
                        "ref_id": "BIBREF5"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Related Work",
                "sec_num": "2"
            },
            {
                "text": "Flat features commonly used for intra-sentential relation extraction (Mintz et al., 2009) include: a feature representing the entity that occurs first in the sentence; the sequence of lexical tokens and part-of-speech (POS) tags between the two entities, in the sentence; a sequence of lexical tokens and their POS tags on the left hand side of the first entity and on the right hand side of the second entity; a dependency path between the two entities and the verbs that occur between the entities. Composite kernels using flat and structured features have been successfully applied for intra-sentential relation extraction (Zelenko et al., 2003; Bunescu and Mooney, 2004; Culotta and Sorensen, 2004; Zhou et al., 2007) . Culotta and Sorensen (2004) and Zhou et al. (2007) have shown that tree kernels combined with flat kernels are more effective for intra-sentential relation extraction than either kernel used alone. In experiments on the ACE corpus, Zhou et al. (2007) achieved f-measures of 0.741 using syntactic parse tree features which outperforms dependency trees. Zhang et al. (2006) further explored which portion of parse trees are most informative for intrasentential relation extraction by testing seven dif-ferent subtrees as features. The shortest pathenclosed tree performed the best where the shortest path-enclosed tree is the subtree that includes only the two entities participating in the relation and the intervening syntactic structure.",
                "cite_spans": [
                    {
                        "start": 69,
                        "end": 89,
                        "text": "(Mintz et al., 2009)",
                        "ref_id": null
                    },
                    {
                        "start": 626,
                        "end": 648,
                        "text": "(Zelenko et al., 2003;",
                        "ref_id": "BIBREF23"
                    },
                    {
                        "start": 649,
                        "end": 674,
                        "text": "Bunescu and Mooney, 2004;",
                        "ref_id": "BIBREF2"
                    },
                    {
                        "start": 675,
                        "end": 702,
                        "text": "Culotta and Sorensen, 2004;",
                        "ref_id": "BIBREF4"
                    },
                    {
                        "start": 703,
                        "end": 721,
                        "text": "Zhou et al., 2007)",
                        "ref_id": "BIBREF25"
                    },
                    {
                        "start": 724,
                        "end": 751,
                        "text": "Culotta and Sorensen (2004)",
                        "ref_id": "BIBREF4"
                    },
                    {
                        "start": 756,
                        "end": 774,
                        "text": "Zhou et al. (2007)",
                        "ref_id": "BIBREF25"
                    },
                    {
                        "start": 956,
                        "end": 974,
                        "text": "Zhou et al. (2007)",
                        "ref_id": "BIBREF25"
                    },
                    {
                        "start": 1076,
                        "end": 1095,
                        "text": "Zhang et al. (2006)",
                        "ref_id": "BIBREF24"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Related Work",
                "sec_num": "2"
            },
            {
                "text": "We classify relations using SVMs, a standard approach that has been widely used in relation extraction (Agichtein and Gravano, 2000; Zelenko et al., 2003; Roberts et al., 2008; Ittoo and Bouma, 2010) . The SVM light implementation (Joachims, 2002 ) and Moschitti's tree kernel tools (Moschitti, 2006) are used. Each pair of entities that appears in the document and is of the correct named entity types is considered a possible relation for that relation type. Features are extracted from the text to represent each possible relations and these are classified using a binary SVM model. These features are adapted from the set of commonly used features for intra-sentential relation extraction and are based on both flat features and the structured features derived from parse trees. Experiments are also conducted combining the two types of features in composite kernels.",
                "cite_spans": [
                    {
                        "start": 103,
                        "end": 132,
                        "text": "(Agichtein and Gravano, 2000;",
                        "ref_id": "BIBREF0"
                    },
                    {
                        "start": 133,
                        "end": 154,
                        "text": "Zelenko et al., 2003;",
                        "ref_id": "BIBREF23"
                    },
                    {
                        "start": 155,
                        "end": 176,
                        "text": "Roberts et al., 2008;",
                        "ref_id": "BIBREF14"
                    },
                    {
                        "start": 177,
                        "end": 199,
                        "text": "Ittoo and Bouma, 2010)",
                        "ref_id": "BIBREF6"
                    },
                    {
                        "start": 231,
                        "end": 246,
                        "text": "(Joachims, 2002",
                        "ref_id": "BIBREF8"
                    },
                    {
                        "start": 283,
                        "end": 300,
                        "text": "(Moschitti, 2006)",
                        "ref_id": "BIBREF13"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Relation Extraction System",
                "sec_num": "3"
            },
            {
                "text": "To our knowledge tree and composite kernels have not been applied to inter-sentential relation extraction.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Relation Extraction System",
                "sec_num": "3"
            },
            {
                "text": "The entities participating in an inter-sentential relation can occur in any two sentences in a document; therefore the sequence of tokens between the two entities can include a large number of tokens. We therefore use a windowing method to model context of the entities separately. This feature list is given below:",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Flat Features",
                "sec_num": "3.1"
            },
            {
                "text": "\u2022 A window of t tokens from the surrounding context of each entity.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Flat Features",
                "sec_num": "3.1"
            },
            {
                "text": "\u2022 A window of t POS tags from the surrounding context of each entity",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Flat Features",
                "sec_num": "3.1"
            },
            {
                "text": "\u2022 The two nearest dominating verbs for each of the entities, identified in the parse tree structure.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Flat Features",
                "sec_num": "3.1"
            },
            {
                "text": "\u2022 A distance feature, dist, which corresponds to the number of intervening sentences between e 1 and e 2 .",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Flat Features",
                "sec_num": "3.1"
            },
            {
                "text": "The use of a window to select the token and POS tag features for each entity, instead of the sequence of tokens between two entities, avoids the situation where document length token sequence is used as a feature. In these experiments two window sizes are used: t = 6 and t = 12 which represent three and six tokens to the left-hand-side and righthand-side of e 1 and e 2 respectively. The likelihood of a inter-sentential relation is inversely proportional to the distance between the two participating entities and the dist feature adds this information to the representation.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Flat Features",
                "sec_num": "3.1"
            },
            {
                "text": "Structured features used for intra-sentential relation extraction are based on parse trees. As only entities occurring in the same sentence can be part of a intra-sentential relation, it can be assumed that related entities always appear in a single parse tree. However, this assumption does not hold for inter-sentential relations. We overcame this problem by joining parse trees for pairs of entities by adding a new node (ROOT) that connects the parses. Two new features were developed using this approach based on the shortest path-enclosed tree (Zhang et al., 2006) :",
                "cite_spans": [
                    {
                        "start": 550,
                        "end": 570,
                        "text": "(Zhang et al., 2006)",
                        "ref_id": "BIBREF24"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Structured Features",
                "sec_num": "3.2"
            },
            {
                "text": "\u2022 The shortest path tree (SPT) structure which only contains the shortest path between the two entities, that is the conjunction of the path from e 1 to the root and the path from e 2 to the root.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Structured Features",
                "sec_num": "3.2"
            },
            {
                "text": "\u2022 The adapted shortest path-enclosed tree (SPET) consisting of a subtree containing the shortest path between the two participating entities and all intervening nodes and structure to provide context.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Structured Features",
                "sec_num": "3.2"
            },
            {
                "text": "Examples are shown in Figure 1 .",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 22,
                        "end": 30,
                        "text": "Figure 1",
                        "ref_id": null
                    }
                ],
                "eq_spans": [],
                "section": "Structured Features",
                "sec_num": "3.2"
            },
            {
                "text": "The MUC 6 management succession task identifies information about people entering or leaving management positions in organizations and has been shown to include both inter-and intrasentential relations (Swampillai and Stevenson, 2010) . The main entities participating in these events are the persons joining or leaving (Per), the positions they are taking up or vacating (Post) and the organizations in which the position exists (Org). A version of the MUC6 corpus that has been converted to binary relations is used (Swampillai and Stevenson, 2010) , where the Figure 1 : Examples of (a) shortest path-enclosed tree and (b) shortest path tree adapted for intersentential relation extraction.",
                "cite_spans": [
                    {
                        "start": 202,
                        "end": 234,
                        "text": "(Swampillai and Stevenson, 2010)",
                        "ref_id": "BIBREF19"
                    },
                    {
                        "start": 518,
                        "end": 550,
                        "text": "(Swampillai and Stevenson, 2010)",
                        "ref_id": "BIBREF19"
                    }
                ],
                "ref_spans": [
                    {
                        "start": 563,
                        "end": 571,
                        "text": "Figure 1",
                        "ref_id": null
                    }
                ],
                "eq_spans": [],
                "section": "Extraction Task",
                "sec_num": "4"
            },
            {
                "text": "three relation types, PerOrg, PerPost and PostOrg, have been manually identified annotated. For example, the following sentences include one intra-sentential relation, PerPost(Vern Raburn, president), and two inter-sentential relations, Per-Org(Vern Raburn, Paul Allen Group) and Pos-tOrg(president, Paul Allen Group).",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Extraction Task",
                "sec_num": "4"
            },
            {
                "text": "\"Paul G. Allen, the billionaire cofounder of Microsft Corp., has started a company and named longtime friend Vern Raburn its president.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Extraction Task",
                "sec_num": "4"
            },
            {
                "text": "The company, to be called Paul Allen Group will be based in Bellevue, Wash., and will coordinate the overall strategy. . . \"",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Extraction Task",
                "sec_num": "4"
            },
            {
                "text": "Intuitively, inter-sentential relation extraction is related to co-reference resolution. However, whilst the resolution of anaphoric expressions can address a significant proportion of these relations, an analysis of the MUC6 corpus by Stevenson (2006) shows that many of these relations require inference across information contained in multiple sentences, possibly using discourse analysis and world knowledge. For example, the following sentences describe a PerPost relation where Kenneth Newell leaves the position of senior vice president, Europe, Africa and Mediterranean.",
                "cite_spans": [
                    {
                        "start": 236,
                        "end": 252,
                        "text": "Stevenson (2006)",
                        "ref_id": "BIBREF18"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Extraction Task",
                "sec_num": "4"
            },
            {
                "text": "\"David J. Bronczek, vice president and general manager of Federal Express Canada Ltd., was named senior vice president, Europe, Africa and Mediterranean, at this air-express concern.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Extraction Task",
                "sec_num": "4"
            },
            {
                "text": "Mr. Bronczek succeeds Kenneth Newell, 55, who was named to the new post of senior vice president, retail service operations.\"",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Extraction Task",
                "sec_num": "4"
            },
            {
                "text": "This relation can only be inferred using the knowledge that when one executive replaces another they must leave the position they are currently holding. This paper proposes an approach that does not require the kind of complex linguistic understanding required for co-reference resolution and addresses all inter-sentential relations.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Extraction Task",
                "sec_num": "4"
            },
            {
                "text": "In the case of intra-sentential relations, possible relations are constrained to pairs of entities that occur within a sentence. Whereas for intersentential relations all pairs of entities that occur in a document are possible relations. This causes an explosion in the number of negative instances in the inter-sentential case compared to the intrasentential case. This coupled with a smaller number of positive relations (only 28.5%) causes a highly unbalanced data set. The percentage of positive examples of relations in all cases is shown in Table 2 . It should be noted that there are an extremely limited number of PerPost inter-sentential relations, only 64, present in the corpus. This level of imbalance in the data set can render classifiers ineffective (Wu and Chang, 2003) . Various approaches to learning with unbalanced data have been proposed. Undersampling the negative class prior to learning (Japkowicz, 2000) discards a large proportion of the data and the data used for learning no longer approximates the probability distribution of the target population. The other approach is to introduce a bias in the learning algorithm which compensates for the unbalanced training data without discarding information. Two established methods are cost-sensitive learning (Morik et al., 1999) and hyperplane adjustment (Shanahan and Roma, 2003) both of which have been applied to the relation extraction system. Experiments comparing the two techniques showed that cost-sensitive learning does not perform as well as hyperplane adjustment and these results are not reported here.",
                "cite_spans": [
                    {
                        "start": 765,
                        "end": 785,
                        "text": "(Wu and Chang, 2003)",
                        "ref_id": "BIBREF22"
                    },
                    {
                        "start": 911,
                        "end": 928,
                        "text": "(Japkowicz, 2000)",
                        "ref_id": "BIBREF7"
                    },
                    {
                        "start": 1281,
                        "end": 1301,
                        "text": "(Morik et al., 1999)",
                        "ref_id": "BIBREF12"
                    }
                ],
                "ref_spans": [
                    {
                        "start": 547,
                        "end": 554,
                        "text": "Table 2",
                        "ref_id": "TABREF3"
                    }
                ],
                "eq_spans": [],
                "section": "Data Sparsity",
                "sec_num": "5"
            },
            {
                "text": "Threshold adjustment is a method for counteracting the bias in SVM models resulting from unbalanced data (Shanahan and Roma, 2003) . In the case of unbalanced data the SVM hyperplane is biased towards the negative class, however the hyperplane can be offset so that it preserves the orientation of the original hyperplane but pushes it towards the negative class. The threshold, \u03b2, is used to adjust the hyperplane immediately training. Given a set of labelled training instances {x i , y i } i=1...n where input points x i map to targets y i \u2208 \u00b11, the class prediction of a new test instance x is derived using",
                "cite_spans": [
                    {
                        "start": 105,
                        "end": 130,
                        "text": "(Shanahan and Roma, 2003)",
                        "ref_id": "BIBREF17"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Threshold Adjustment",
                "sec_num": "5.1"
            },
            {
                "text": "EQUATION",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [
                    {
                        "start": 0,
                        "end": 8,
                        "text": "EQUATION",
                        "ref_id": "EQREF",
                        "raw_str": "sign n i=1 \u03b1iyiK(x, xi) + b \u2212 \u03b2",
                        "eq_num": "(1)"
                    }
                ],
                "section": "Threshold Adjustment",
                "sec_num": "5.1"
            },
            {
                "text": "where the bias b and coefficients \u03b1 i are found by SVM training and K is the kernel function. The constant \u03b2 is added to bias in the model in favour of the positive instances. Inter-sentential relation extraction is carried out for various values of \u03b2, using a prototypical feature selection, including both the flat and structured features. Table2 gives results for the baseline, \u03b2 = 0, and the results for the best performing model for each relation type where \u03b2 maximizes the f-measure. These results show that adjusting the threshold for SVMs can achieve a statistically significant 1 improvement in f-measure over standard SVM models for both relation types.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Threshold Adjustment",
                "sec_num": "5.1"
            },
            {
                "text": "The relation extraction system described in Section 3 was evaluated on both inter-sentential and intra-sentential relations in the MUC6 corpus. Training and testing was performed using 10-fold nested cross validation. ",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Relation Extraction",
                "sec_num": "6"
            },
            {
                "text": "Nested cross-validation (Scheffer, 1999) was used to automatically set the threshold parameter, \u03b2, by optimizing it empirically during training. This method also ensures that \u03b2 is set independently from our testing data. This sub-divides the training data in each cross-validation fold into sub-folds which are used to identify the optimal value of the threshold for that particular training data. This threshold value is then used when evaluating the test data of the original cross-validation fold. The optimal threshold value of each cross-validation fold is identified in the sub-folds by training using a variety of threshold values and evaluating them on the sub-fold reserved for testing. The threshold with the highest average value across all subfolds is then used. This nested cross-validation algorithm is described in Algorithm 1.",
                "cite_spans": [
                    {
                        "start": 24,
                        "end": 40,
                        "text": "(Scheffer, 1999)",
                        "ref_id": "BIBREF15"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Nested Cross-Validation",
                "sec_num": "6.1"
            },
            {
                "text": "The performance of various feature sets (kernels) is evaluated on both the inter-sentential (Table 3) and intra-sentential (Table 4 ) relation extraction task. The relation extraction system classifies possible relations from the corpus as one of the three relation types, PerOrg, PerPost or PostOrg. The recall, precision and f-measure metrics is reported after each classifier and kernel. The first three kernels in the tables contain flat features, where W inn indicates the inclusion of n POS tags and tokens surrounding each entity. The SP T and SP ET kernels are the shortest path-enclosed tree and the shortest path tree kernels. The final two are composite kernels combining each tree kernel, SP T and SP ET , with the overall best performing flat kernel, W in12 + Dist + V erbs. The best performance is achieved using the composite SPT kernel for all relation types and for both the inter-sentential and intra-sentential tasks. However, in the case of inter-sentential relations there is no statistically significant difference 2 be-Algorithm 1 Procedure for carrying out nested cross-validation to determine the optimal threshold value, \u03b2 * , for the training data in each fold. This algorithm extends standard cross-validation by adding an inner loop to estimate the optimal threshold value by finding the maximum f-score for each threshold value , \u03b2.",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 92,
                        "end": 101,
                        "text": "(Table 3)",
                        "ref_id": "TABREF6"
                    },
                    {
                        "start": 123,
                        "end": 131,
                        "text": "(Table 4",
                        "ref_id": null
                    }
                ],
                "eq_spans": [],
                "section": "Results",
                "sec_num": "6.2"
            },
            {
                "text": "1: thresholds = {0.25, . . . , -1} 2: Split data, T , into 10 folds (t 1 , t 2 , ... t 10 ) 3: for i = 1 to 10 do 4:",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Results",
                "sec_num": "6.2"
            },
            {
                "text": "test set \u2190 t i 5: training set \u2190 T \u2212 t i 6:",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Results",
                "sec_num": "6.2"
            },
            {
                "text": "Split training set into 9 folds (",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Results",
                "sec_num": "6.2"
            },
            {
                "text": "v 1 , v 2 , ... v 9 ) 7:",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Results",
                "sec_num": "6.2"
            },
            {
                "text": "for j = 1 to 9 do 8:",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Results",
                "sec_num": "6.2"
            },
            {
                "text": "testing validation set \u2190 v j 9:",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Results",
                "sec_num": "6.2"
            },
            {
                "text": "training validation set \u2190 training set \u2212 v j",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Results",
                "sec_num": "6.2"
            },
            {
                "text": "Train SVM using the training validation set, evaluate on test validation set and record the predictions, pred(k).",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "10:",
                "sec_num": null
            },
            {
                "text": "for all \u03b2 \u2208 thresholds do",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "11:",
                "sec_num": null
            },
            {
                "text": "Calculate the f-measure of pred(j) with a threshold setting of \u03b2 and record, F (pred(j)) \u03b2 . ",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "12:",
                "sec_num": null
            },
            {
                "text": "F avg (\u03b2) \u2190 j=1to9 F (pred(j)) \u03b2 9 . 17:",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "12:",
                "sec_num": null
            },
            {
                "text": "end for all",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "12:",
                "sec_num": null
            },
            {
                "text": "Determine the best threshold setting, \u03b2 * , where \u03b2 * = argmax F avg (\u03b2).",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "18:",
                "sec_num": null
            },
            {
                "text": "Train the SVM using training set, evaluate on test set with \u03b2 * as threshold setting and record performance, P (i) 20: end for 21: perf ormance \u2190 i=1to10 P (i) 10 22: return perf ormance tween the performance of the SPT kernel and the composite SPT kernel on both PerOrg and Pos- Table 4 : Performance of intra-sentential relation extraction for flat, tree and composite kernels using using threshold optimization.",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 280,
                        "end": 287,
                        "text": "Table 4",
                        "ref_id": null
                    }
                ],
                "eq_spans": [],
                "section": "19:",
                "sec_num": null
            },
            {
                "text": "tOrg relations. This shows the minimal contribution of flat features to the inter-sentential classification task, unlike the intra-sentential task where the addition of flat features makes a marked improvement.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "19:",
                "sec_num": null
            },
            {
                "text": "For both tasks the relation type with the best f-measure is PostOrg at 0.809 and 0.750 for the inter-and intra-sentential relations respectively. The data set associated with this relation is the least skewed of the data sets. In contrast Per-Post, the most unbalanced data set, has the worst f-measure for the intra-sentential relation extraction task at 0.652 and fails to make any impact on the inter-sentential relation extraction task with an f-measure of only 0.200. This suggests that bias still has an effect on performance despite the steps taken to mitigate against it. Different behaviour is observed for inter-and intra-sentential relations when comparing the results of the experiments using the flat kernel. The use of a wider context feature window and surrounding verbs improves the overall f-measure scores for inter-sentential relations, substantially improving recall while slightly degrading precision. However, for the intra-sentential case adding context and verb features either maintains or degrades performance. Flat features alone achieve better performance for the inter-sentential task (0.608, 0.128 and 0.708) than for intra-sentential task (0.519, 0.615 and 0.581).",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "19:",
                "sec_num": null
            },
            {
                "text": "Results using tree and composite kernels show that the SPT tree representation is more effective than the SPET tree for both tasks. This may be because SPET subtrees are larger and potentially contain more noise. Tree kernels perform better than those created from flat features demonstrating that structured features are hugely informative for relation extraction.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "19:",
                "sec_num": null
            },
            {
                "text": "Overall, the results show that the best performing kernel is the composite SPT kernel. This is inline with previous research into intra-sentential relation extraction (Zhou et al., 2007; Zhang et al., 2006) where the best results are achieved with a shortest path composite kernel. For intersentential relations f-measures of 0.651, 0.200 and 0.809 are achieved. The use of the composite kernel SVM approach to relation extraction gives comparable performance on the inter-sentential task except in the case of relations with extremely skewed training data.",
                "cite_spans": [
                    {
                        "start": 167,
                        "end": 186,
                        "text": "(Zhou et al., 2007;",
                        "ref_id": "BIBREF25"
                    },
                    {
                        "start": 187,
                        "end": 206,
                        "text": "Zhang et al., 2006)",
                        "ref_id": "BIBREF24"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "19:",
                "sec_num": null
            },
            {
                "text": "This paper investigates whether state-of-the-art approaches to intra-sentential relation extraction can be effectively adapted for inter-sentential relation extraction. The results demonstrate that a composite kernel approach to inter-sentential relation extraction can achieve comparable results with intra-sentential relation extraction. We have also shown that the structured features used for intra-sentential relation extraction can be easily adapted for the inter-sentential case. The performance of structured features has been found to be superior to flat features which have previously been used for the inter-sentential relation extraction task (McDonald et al., 2005; Roberts et al., 2008) .",
                "cite_spans": [
                    {
                        "start": 655,
                        "end": 678,
                        "text": "(McDonald et al., 2005;",
                        "ref_id": "BIBREF9"
                    },
                    {
                        "start": 679,
                        "end": 700,
                        "text": "Roberts et al., 2008)",
                        "ref_id": "BIBREF14"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Conclusions",
                "sec_num": "7"
            },
            {
                "text": "Overall, composite kernels, that combine a larger context window with a SPT tree, were found to give better performance than either flat or structured features alone. Inter-sentential PerPost relations could not effectively be extracted using this approach, most likely due to the bias in the PerPost data set.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Conclusions",
                "sec_num": "7"
            },
            {
                "text": "Threshold adaption, which was optimised using nested cross-validation, significantly improved the performance of SVM models for inter-sentential relation extraction. Average f-measure improved from 0.295 to 0.605, a significant improvement in performance over all kernel types.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Conclusions",
                "sec_num": "7"
            },
            {
                "text": "Statistical significance is tested using the Mann-Whitney U test, P < 0.05.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "",
                "sec_num": null
            },
            {
                "text": "Statistical significance is tested using the Mann-Whitney U test, P < 0.05.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "",
                "sec_num": null
            }
        ],
        "back_matter": [],
        "bib_entries": {
            "BIBREF0": {
                "ref_id": "b0",
                "title": "Snowball: Extracting Relations from Large Plain-Text Collections",
                "authors": [
                    {
                        "first": "Eugene",
                        "middle": [],
                        "last": "Agichtein",
                        "suffix": ""
                    },
                    {
                        "first": "Luis",
                        "middle": [],
                        "last": "Gravano",
                        "suffix": ""
                    }
                ],
                "year": 2000,
                "venue": "Proceedings of the 5th Association for Computing Machinery International Conference on Digital Libraries",
                "volume": "",
                "issue": "",
                "pages": "85--94",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Eugene Agichtein and Luis Gravano. 2000. Snowball: Extracting Relations from Large Plain-Text Collec- tions. In Proceedings of the 5th Association for Computing Machinery International Conference on Digital Libraries, 85-94.",
                "links": null
            },
            "BIBREF1": {
                "ref_id": "b1",
                "title": "The Tradeoffs between Open and Traditional Relation Extraction",
                "authors": [
                    {
                        "first": "Michele",
                        "middle": [],
                        "last": "Banko",
                        "suffix": ""
                    },
                    {
                        "first": "Oren",
                        "middle": [],
                        "last": "Etzioni",
                        "suffix": ""
                    }
                ],
                "year": 2008,
                "venue": "proceedings of the 46th Association for Computational Linguistics Annual Meeting and Human Language Technology Conference (ACL-08:HLT)",
                "volume": "",
                "issue": "",
                "pages": "28--36",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Michele Banko and Oren Etzioni. 2008. The Tradeoffs between Open and Traditional Relation Extraction. In proceedings of the 46th Association for Computa- tional Linguistics Annual Meeting and Human Lan- guage Technology Conference (ACL-08:HLT), 28- 36.",
                "links": null
            },
            "BIBREF2": {
                "ref_id": "b2",
                "title": "Collective Information Extraction with Relational Markov Networks",
                "authors": [
                    {
                        "first": "Razvan",
                        "middle": [],
                        "last": "Bunescu",
                        "suffix": ""
                    },
                    {
                        "first": "Raymond",
                        "middle": [
                            "J"
                        ],
                        "last": "Mooney",
                        "suffix": ""
                    }
                ],
                "year": 2004,
                "venue": "Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics (ACL",
                "volume": "",
                "issue": "",
                "pages": "438--446",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Razvan Bunescu and Raymond J. Mooney. 2004. Collective Information Extraction with Relational Markov Networks. In Proceedings of the 42nd An- nual Meeting on Association for Computational Lin- guistics (ACL 2004), 438-446.",
                "links": null
            },
            "BIBREF3": {
                "ref_id": "b3",
                "title": "A Maximum Entropy Approach to Information Extraction from Semi-Structured and Free Text",
                "authors": [
                    {
                        "first": "Hai",
                        "middle": [],
                        "last": "Leong Chieu",
                        "suffix": ""
                    },
                    {
                        "first": "Hwee Tou",
                        "middle": [],
                        "last": "Ng",
                        "suffix": ""
                    }
                ],
                "year": 2002,
                "venue": "Proceedingd of the Eighteenth International Conference on Artificial Intelligence (AAAI02)",
                "volume": "",
                "issue": "",
                "pages": "768--791",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Hai Leong Chieu and Hwee Tou Ng. 2002. A Max- imum Entropy Approach to Information Extraction from Semi-Structured and Free Text. In Proceed- ingd of the Eighteenth International Conference on Artificial Intelligence (AAAI02), 768-791.",
                "links": null
            },
            "BIBREF4": {
                "ref_id": "b4",
                "title": "Dependency Tree Kernels for Relation Extraction",
                "authors": [
                    {
                        "first": "Aron",
                        "middle": [],
                        "last": "Culotta",
                        "suffix": ""
                    },
                    {
                        "first": "Jeffrey",
                        "middle": [],
                        "last": "Sorensen",
                        "suffix": ""
                    }
                ],
                "year": 2004,
                "venue": "Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics",
                "volume": "",
                "issue": "",
                "pages": "423--430",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Aron Culotta and Jeffrey Sorensen. 2004. Dependency Tree Kernels for Relation Extraction. In Proceed- ings of the 42nd Annual Meeting on Association for Computational Linguistics (ACL 2004), 423-430.",
                "links": null
            },
            "BIBREF5": {
                "ref_id": "b5",
                "title": "Recognizing Relation Expression between Named Entities based on Inherent and Context-dependent Features of Relational words",
                "authors": [
                    {
                        "first": "Toru",
                        "middle": [],
                        "last": "Hirano",
                        "suffix": ""
                    },
                    {
                        "first": "Hisako",
                        "middle": [],
                        "last": "Asano",
                        "suffix": ""
                    },
                    {
                        "first": "Yoshihiro",
                        "middle": [],
                        "last": "Matsuo",
                        "suffix": ""
                    },
                    {
                        "first": "Genichiro",
                        "middle": [],
                        "last": "Kikui",
                        "suffix": ""
                    }
                ],
                "year": 2010,
                "venue": "Proceedings of the 23rd International Conference on Computational Linguistics (Coling 2010: Posters)",
                "volume": "",
                "issue": "",
                "pages": "409--417",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Toru Hirano, Hisako Asano, Yoshihiro Matsuo and Genichiro Kikui. 2010. Recognizing Relation Ex- pression between Named Entities based on Inher- ent and Context-dependent Features of Relational words. In Proceedings of the 23rd International Conference on Computational Linguistics (Coling 2010: Posters), 409-417.",
                "links": null
            },
            "BIBREF6": {
                "ref_id": "b6",
                "title": "On Learning Subtypes of the Part-Whole Relation: Do Not Mix Your Seeds",
                "authors": [
                    {
                        "first": "Ashwin",
                        "middle": [],
                        "last": "Ittoo",
                        "suffix": ""
                    },
                    {
                        "first": "Gosse",
                        "middle": [],
                        "last": "Bouma",
                        "suffix": ""
                    }
                ],
                "year": 2010,
                "venue": "Proceedings of the 48th Annual Meeting on Association for Computational Linguistics",
                "volume": "",
                "issue": "",
                "pages": "1328--1336",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Ashwin Ittoo and Gosse Bouma. 2010. On Learn- ing Subtypes of the Part-Whole Relation: Do Not Mix Your Seeds. In Proceedings of the 48th Annual Meeting on Association for Computational Linguis- tics (ACL 2010), 1328-1336.",
                "links": null
            },
            "BIBREF7": {
                "ref_id": "b7",
                "title": "The Class Imbalance Problem: Significance and Strategies",
                "authors": [
                    {
                        "first": "Nathalie",
                        "middle": [],
                        "last": "Japkowicz",
                        "suffix": ""
                    }
                ],
                "year": 2000,
                "venue": "Proceedings of the 2000 International Conference on Artificial Intelligence (ICAI)",
                "volume": "",
                "issue": "",
                "pages": "111--117",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Nathalie Japkowicz. 2000. The Class Imbalance Prob- lem: Significance and Strategies. In Proceedings of the 2000 International Conference on Artificial In- telligence (ICAI), 111-117.",
                "links": null
            },
            "BIBREF8": {
                "ref_id": "b8",
                "title": "Learning to Classify Text using Support Vector Machines",
                "authors": [
                    {
                        "first": "Thorsten",
                        "middle": [],
                        "last": "Joachims",
                        "suffix": ""
                    }
                ],
                "year": 2002,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Thorsten Joachims. 2002. Learning to Classify Text using Support Vector Machines. Kluwer Academic Publishers, Norwell, MA, USA.",
                "links": null
            },
            "BIBREF9": {
                "ref_id": "b9",
                "title": "Simple Algorithms for Complex Relation Extraction with Applications to Biomedical IE",
                "authors": [
                    {
                        "first": "Ryan",
                        "middle": [],
                        "last": "Mcdonald",
                        "suffix": ""
                    },
                    {
                        "first": "Fernando",
                        "middle": [],
                        "last": "Pereira",
                        "suffix": ""
                    },
                    {
                        "first": "Seth",
                        "middle": [],
                        "last": "Kulick",
                        "suffix": ""
                    },
                    {
                        "first": "Scott",
                        "middle": [],
                        "last": "Winters",
                        "suffix": ""
                    },
                    {
                        "first": "Yang",
                        "middle": [],
                        "last": "Jin",
                        "suffix": ""
                    },
                    {
                        "first": "Pete",
                        "middle": [],
                        "last": "White",
                        "suffix": ""
                    }
                ],
                "year": 2005,
                "venue": "Proceedings of the 43rd Annual Meeting on Association for Computational Linguistics (ACL '05",
                "volume": "",
                "issue": "",
                "pages": "491--498",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Ryan McDonald, Fernando Pereira, Seth Kulick, Scott Winters, Yang Jin, and Pete White. 2005. Simple Algorithms for Complex Relation Extraction with Applications to Biomedical IE. In Proceedings of the 43rd Annual Meeting on Association for Com- putational Linguistics (ACL '05), 491-498.",
                "links": null
            },
            "BIBREF10": {
                "ref_id": "b10",
                "title": "Challenges for Extracting Biomedical Knowledge from Full Text",
                "authors": [
                    {
                        "first": "Tara",
                        "middle": [],
                        "last": "Mcintosh",
                        "suffix": ""
                    },
                    {
                        "first": "James",
                        "middle": [
                            "R"
                        ],
                        "last": "Curran",
                        "suffix": ""
                    }
                ],
                "year": 2007,
                "venue": "Proceedings of the Workshop on Biological, Translational and Clinical Language Processing",
                "volume": "",
                "issue": "",
                "pages": "171--178",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Tara McIntosh and James R. Curran. 2007. Chal- lenges for Extracting Biomedical Knowledge from Full Text. In Proceedings of the Workshop on Bi- ological, Translational and Clinical Language Pro- cessing (BioNLP 2007), 171-178.",
                "links": null
            },
            "BIBREF11": {
                "ref_id": "b11",
                "title": "Distant supervision for relation extraction without labeled data",
                "authors": [],
                "year": 2009,
                "venue": "Proceedings of the Joint Conference of the 47th Annual Meeting of the ACL and the 4th International Joint Conference on Natural Language Processing of the AFNLP",
                "volume": "",
                "issue": "",
                "pages": "1003--1011",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Mike Mintz, Steven Bills, Rion Snow and Daniel Ju- rafsky. 2009. Distant supervision for relation ex- traction without labeled data. In Proceedings of the Joint Conference of the 47th Annual Meeting of the ACL and the 4th International Joint Conference on Natural Language Processing of the AFNLP, 1003- 1011.",
                "links": null
            },
            "BIBREF12": {
                "ref_id": "b12",
                "title": "Combining Statistical Learning with a Knowledge-Based Approach -A Case Study in Intensive Care Monitoring",
                "authors": [
                    {
                        "first": "Katharina",
                        "middle": [],
                        "last": "Morik",
                        "suffix": ""
                    },
                    {
                        "first": "Peter",
                        "middle": [],
                        "last": "Brockhausen",
                        "suffix": ""
                    },
                    {
                        "first": "Thorsten",
                        "middle": [],
                        "last": "Joachims",
                        "suffix": ""
                    }
                ],
                "year": 1999,
                "venue": "Proceedings of the Sixteenth International Conference on Machine Learning (ICML '99)",
                "volume": "",
                "issue": "",
                "pages": "268--277",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Katharina Morik, Peter Brockhausen and Thorsten Joachims. 1999. Combining Statistical Learn- ing with a Knowledge-Based Approach -A Case Study in Intensive Care Monitoring. Proceedings of the Sixteenth International Conference on Machine Learning (ICML '99), 268-277.",
                "links": null
            },
            "BIBREF13": {
                "ref_id": "b13",
                "title": "Making Tree Kernels Practical for Natural Language Learning",
                "authors": [
                    {
                        "first": "Alessandro",
                        "middle": [],
                        "last": "Moschitti",
                        "suffix": ""
                    }
                ],
                "year": 2006,
                "venue": "Proceedings of the 11st Conference of the European Chapter of the Association for Computational Linguistics",
                "volume": "",
                "issue": "",
                "pages": "113--120",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Alessandro Moschitti. 2006. Making Tree Kernels Practical for Natural Language Learning. In Pro- ceedings of the 11st Conference of the European Chapter of the Association for Computational Lin- guistics (EACL 2006), 113-120.",
                "links": null
            },
            "BIBREF14": {
                "ref_id": "b14",
                "title": "Extracting Clinical Relationships from Patient Narratives",
                "authors": [
                    {
                        "first": "Angus",
                        "middle": [],
                        "last": "Roberts",
                        "suffix": ""
                    },
                    {
                        "first": "Robert",
                        "middle": [],
                        "last": "Gaizauskas",
                        "suffix": ""
                    },
                    {
                        "first": "Mark",
                        "middle": [],
                        "last": "Hepple",
                        "suffix": ""
                    }
                ],
                "year": 2008,
                "venue": "Proceedings of the Workshop on Current Trends in Biomedical Natural Language Processing",
                "volume": "",
                "issue": "",
                "pages": "10--18",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Angus Roberts, Robert Gaizauskas and Mark Hepple. 2008. Extracting Clinical Relationships from Pa- tient Narratives. In Proceedings of the Workshop on Current Trends in Biomedical Natural Language Processing, 10-18.",
                "links": null
            },
            "BIBREF15": {
                "ref_id": "b15",
                "title": "Error Estimation and Model Selection",
                "authors": [
                    {
                        "first": "Tobias",
                        "middle": [],
                        "last": "Scheffer",
                        "suffix": ""
                    }
                ],
                "year": 1999,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Tobias Scheffer. 1999. Error Estimation and Model Selection. Technischen Universit\u00e4t Berlin, School of Computer Science.",
                "links": null
            },
            "BIBREF16": {
                "ref_id": "b16",
                "title": "On-Demand Information Extraction",
                "authors": [
                    {
                        "first": "Satoshi",
                        "middle": [],
                        "last": "Sekine",
                        "suffix": ""
                    }
                ],
                "year": 2006,
                "venue": "Proceedings of the COLING/ACL 2006 Main Conference Poster Sessions",
                "volume": "",
                "issue": "",
                "pages": "731--738",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Satoshi Sekine. 2006. On-Demand Information Ex- traction. In Proceedings of the COLING/ACL 2006 Main Conference Poster Sessions, 731-738.",
                "links": null
            },
            "BIBREF17": {
                "ref_id": "b17",
                "title": "Boosting Support Vector Machines for Text Classification through Parameter-free Threshold Relaxation",
                "authors": [
                    {
                        "first": "G",
                        "middle": [],
                        "last": "James",
                        "suffix": ""
                    },
                    {
                        "first": "Norbert",
                        "middle": [],
                        "last": "Shanahan",
                        "suffix": ""
                    },
                    {
                        "first": "",
                        "middle": [],
                        "last": "Roma",
                        "suffix": ""
                    }
                ],
                "year": 2003,
                "venue": "Proceedings of the 12th International Conference on Information and Knowledge Management (CIKM '03)",
                "volume": "",
                "issue": "",
                "pages": "247--245",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "James G. Shanahan and Norbert Roma. 2003. Boost- ing Support Vector Machines for Text Classifica- tion through Parameter-free Threshold Relaxation. In Proceedings of the 12th International Conference on Information and Knowledge Management (CIKM '03), 247-245.",
                "links": null
            },
            "BIBREF18": {
                "ref_id": "b18",
                "title": "Fact Distribution in Information Extraction",
                "authors": [
                    {
                        "first": "Mark",
                        "middle": [],
                        "last": "Stevenson",
                        "suffix": ""
                    }
                ],
                "year": 2006,
                "venue": "Journal of Language Resources and Evaluation",
                "volume": "40",
                "issue": "",
                "pages": "183--201",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Mark Stevenson. 2006. Fact Distribution in Informa- tion Extraction. Journal of Language Resources and Evaluation, 40:183-201.",
                "links": null
            },
            "BIBREF19": {
                "ref_id": "b19",
                "title": "Inter-sentential Relations in Information Extraction Corpora",
                "authors": [
                    {
                        "first": "Kumutha",
                        "middle": [],
                        "last": "Swampillai",
                        "suffix": ""
                    },
                    {
                        "first": "Mark",
                        "middle": [],
                        "last": "Stevenson",
                        "suffix": ""
                    }
                ],
                "year": 2010,
                "venue": "Proceedings of the 7th International Conference on Language Resources and Evaluation (LREC-2010)",
                "volume": "",
                "issue": "",
                "pages": "2637--2641",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Kumutha Swampillai and Mark Stevenson. 2010. Inter-sentential Relations in Information Extraction Corpora. In Proceedings of the 7th International Conference on Language Resources and Evaluation (LREC-2010), 2637-2641.",
                "links": null
            },
            "BIBREF20": {
                "ref_id": "b20",
                "title": "The nature of statistical learning theory",
                "authors": [
                    {
                        "first": "Vladimir",
                        "middle": [
                            "N"
                        ],
                        "last": "Vapnik",
                        "suffix": ""
                    }
                ],
                "year": 1995,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Vladimir N. Vapnik. 1995. The nature of statistical learning theory. Springer-Verlag Inc., New York, USA.",
                "links": null
            },
            "BIBREF21": {
                "ref_id": "b21",
                "title": "Controlling the Sensitivity of Support Vector Machines",
                "authors": [
                    {
                        "first": "Konstantinos",
                        "middle": [],
                        "last": "Veropoulos",
                        "suffix": ""
                    },
                    {
                        "first": "Colin",
                        "middle": [],
                        "last": "Campbell",
                        "suffix": ""
                    },
                    {
                        "first": "Nello",
                        "middle": [],
                        "last": "Cristianini",
                        "suffix": ""
                    }
                ],
                "year": 1999,
                "venue": "Proceedings of the International Joint Conference on AI (IJCAI 1999",
                "volume": "",
                "issue": "",
                "pages": "55--60",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Konstantinos Veropoulos, Colin Campbell and Nello Cristianini. 1999. Controlling the Sensitivity of Support Vector Machines. Proceedings of the Inter- national Joint Conference on AI (IJCAI 1999), 55- 60.",
                "links": null
            },
            "BIBREF22": {
                "ref_id": "b22",
                "title": "Class-Boundary Alignment for Imbalences Dataset Learning",
                "authors": [
                    {
                        "first": "Gang",
                        "middle": [],
                        "last": "Wu",
                        "suffix": ""
                    },
                    {
                        "first": "Edward",
                        "middle": [
                            "Y"
                        ],
                        "last": "Chang",
                        "suffix": ""
                    }
                ],
                "year": 2003,
                "venue": "ICML 2003 Workshop on Learning from Imbalanced Datasets II",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Gang Wu and Edward Y. Chang. 2003. Class- Boundary Alignment for Imbalences Dataset Learn- ing. In ICML 2003 Workshop on Learning from Im- balanced Datasets II, Washington, DC.",
                "links": null
            },
            "BIBREF23": {
                "ref_id": "b23",
                "title": "Kernel methods for Relation Extraction",
                "authors": [
                    {
                        "first": "Dmitry",
                        "middle": [],
                        "last": "Zelenko",
                        "suffix": ""
                    },
                    {
                        "first": "Chinatsu",
                        "middle": [],
                        "last": "Aone",
                        "suffix": ""
                    },
                    {
                        "first": "Anthony",
                        "middle": [],
                        "last": "Richardella",
                        "suffix": ""
                    }
                ],
                "year": 2003,
                "venue": "Journal of Machine Learning Research",
                "volume": "3",
                "issue": "",
                "pages": "1083--1106",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Dmitry Zelenko, Chinatsu Aone and Anthony Richardella. 2003. Kernel methods for Relation Extraction. Journal of Machine Learning Research, 3:1083-1106.",
                "links": null
            },
            "BIBREF24": {
                "ref_id": "b24",
                "title": "A Composite Kernel to Extract Relations between Entities with both Flat and Structured Features",
                "authors": [
                    {
                        "first": "Min",
                        "middle": [],
                        "last": "Zhang",
                        "suffix": ""
                    },
                    {
                        "first": "Jie",
                        "middle": [],
                        "last": "Zhang",
                        "suffix": ""
                    },
                    {
                        "first": "Jian",
                        "middle": [],
                        "last": "Su",
                        "suffix": ""
                    },
                    {
                        "first": "Guodong",
                        "middle": [],
                        "last": "Zhou",
                        "suffix": ""
                    }
                ],
                "year": 2006,
                "venue": "Proceedings of the 21st International Conference on Computational Linguistics (Coling) and the 44th annual meeting of the Association for Computational Linguistics (ACL)",
                "volume": "",
                "issue": "",
                "pages": "825--832",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Min Zhang, Jie Zhang, Jian Su and Guodong Zhou. 2006. A Composite Kernel to Extract Relations be- tween Entities with both Flat and Structured Fea- tures. In Proceedings of the 21st International Con- ference on Computational Linguistics (Coling) and the 44th annual meeting of the Association for Com- putational Linguistics (ACL), 825-832.",
                "links": null
            },
            "BIBREF25": {
                "ref_id": "b25",
                "title": "Tree Kernel-Based Relation Extraction with Context-Sensitive Structured Parse Tree Information",
                "authors": [
                    {
                        "first": "Guodong",
                        "middle": [],
                        "last": "Zhou",
                        "suffix": ""
                    },
                    {
                        "first": "Min",
                        "middle": [],
                        "last": "Zhang",
                        "suffix": ""
                    },
                    {
                        "first": "Donghong",
                        "middle": [],
                        "last": "Ji",
                        "suffix": ""
                    },
                    {
                        "first": "Qiaoming",
                        "middle": [],
                        "last": "Zhu",
                        "suffix": ""
                    }
                ],
                "year": 2007,
                "venue": "Proceedings of the 2007 Joint Conference on Empirical Methods in Natural Language Processing and Computational Natural Language Learning",
                "volume": "",
                "issue": "",
                "pages": "728--736",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "GuoDong Zhou, Min Zhang, DongHong Ji and QiaoM- ing Zhu. 2007. Tree Kernel-Based Relation Extrac- tion with Context-Sensitive Structured Parse Tree Information. In Proceedings of the 2007 Joint Con- ference on Empirical Methods in Natural Language Processing and Computational Natural Language Learning (EMNLP-CoNLL), 728-736.",
                "links": null
            }
        },
        "ref_entries": {
            "TABREF1": {
                "html": null,
                "content": "<table/>",
                "type_str": "table",
                "text": "The bias of the data is expressed here as the percentage of positive relation instances with the total number of instances for each relation type given in brackets.",
                "num": null
            },
            "TABREF3": {
                "html": null,
                "content": "<table/>",
                "type_str": "table",
                "text": "Maximum performance boost of cost-sensitive learning and threshold adjustment methods on the performance of inter-sentential relation extraction SVM models.",
                "num": null
            },
            "TABREF6": {
                "html": null,
                "content": "<table><tr><td>Kernel</td><td>R</td><td>PerOrg P</td><td>F-Meas.</td><td>R</td><td>PerPost P</td><td>F-Meas.</td><td>R</td><td>PostOrg P</td><td>F-Meas.</td></tr><tr><td>Flat</td><td/><td/><td/><td/><td/><td/><td/><td/><td/></tr><tr><td>Win 6</td><td colspan=\"2\">0.535 0.484</td><td>0.508</td><td colspan=\"2\">0.645 0.588</td><td>0.615</td><td colspan=\"2\">0.614 0.550</td><td>0.581</td></tr><tr><td>Win 12</td><td colspan=\"2\">0.628 0.441</td><td>0.519</td><td colspan=\"2\">0.654 0.561</td><td>0.604</td><td colspan=\"2\">0.521 0.503</td><td>0.512</td></tr><tr><td>Win 12+Verbs</td><td colspan=\"2\">0.589 0.459</td><td>0.516</td><td colspan=\"2\">0.660 0.571</td><td>0.612</td><td colspan=\"2\">0.415 0.596</td><td>0.489</td></tr><tr><td>Tree</td><td/><td/><td/><td/><td/><td/><td/><td/><td/></tr><tr><td>SPT</td><td colspan=\"2\">0.566 0.636</td><td>0.599</td><td colspan=\"2\">0.630 0.631</td><td>0.631</td><td colspan=\"2\">0.623 0.754</td><td>0.683</td></tr><tr><td>SPET</td><td colspan=\"2\">0.616 0.414</td><td>0.495</td><td colspan=\"2\">0.576 0.575</td><td>0.575</td><td colspan=\"2\">0.564 0.538</td><td>0.551</td></tr><tr><td>Composite</td><td/><td/><td/><td/><td/><td/><td/><td/><td/></tr><tr><td>SPT and Win 12+Verbs</td><td colspan=\"2\">0.757 0.649</td><td>0.699</td><td colspan=\"2\">0.682 0.624</td><td>0.652</td><td colspan=\"2\">0.759 0.741</td><td>0.750</td></tr><tr><td>SPET and Win 12+Verbs</td><td colspan=\"2\">0.568 0.560</td><td>0.564</td><td colspan=\"2\">0.595 0.628</td><td>0.611</td><td colspan=\"2\">0.685 0.668</td><td>0.677</td></tr></table>",
                "type_str": "table",
                "text": "Performance of inter-sentential relation extraction for flat, tree and composite kernels using threshold optimization.",
                "num": null
            }
        }
    }
}