Supa-AI commited on
Commit
505dd13
·
verified ·
1 Parent(s): 6955679

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +26 -22
README.md CHANGED
@@ -192,25 +192,24 @@ dataset = load_dataset("Supa-AI/STEM-en-ms", name="data_ms")
192
 
193
  This document summarizes the evaluation results for various language models based on **5-shot** and **First Token Accuracy**. The evaluation was conducted across four configurations:
194
 
195
-
196
  | **Model** | **en\_withfigures** | **en\_withoutfigures** | **ms\_withfigures** | **ms\_withoutfigures** |
197
  | --------------------------------- | ------------------- | ---------------------- | ------------------- | ---------------------- |
198
- | **gemini-2.0-flash-exp** | ******63.70%****** | ******75.16%****** | ****_63.36%_**** | ******75.47%****** |
199
- | **gemini-1.5-flash** | **49.66%** | **_67.39%_** | **_50.00%_** | **_64.28%_** |
200
- | **Qwen/Qwen2-VL-72B-Instruct** | **_58.22%_** | **_69.25%_** | **_57.53%_** | **63.66%** |
201
- | **gpt-4o** | **47.95%** | **66.15%** | **50.00%** | **68.01%** |
202
- | **gpt-4o-mini** | **41.10%** | **55.90%** | **38.36%** | **52.80%** |
203
- | **pixtral-large-2411** | **42.81%** | **64.29%** | **35.27%** | **60.87%** |
204
- | **pixtral-12b-2409** | **24.66%** | **48.45%** | **24.66%** | **39.13%** |
205
- | **DeepSeek-V3** | None | ****79.19%**** | None | **__76.40%__** |
206
- | **Qwen2.5-72B-Instruct** | None | **__74.53%__** | None | **72.98%** |
207
- | **Meta-Llama-3.3-70B-Instruct** | None | **67.08%** | None | **58.07%** |
208
- | **Llama-3.2-90B-Vision-Instruct** | None | **65.22%** | None | **58.07%** |
209
- | **sail/Sailor2-20B-Chat** | None | **_66.46%_** | None | **61.68%** |
210
- | **mallam-small** | None | **61.49%** | None | **55.28%** |
211
- | **mistral-large-latest** | None | **60.56%** | None | **53.42%** |
212
- | **google/gemma-2-27b-it** | None | **58.07%** | None | **57.76%** |
213
- | **SeaLLMs-v3-7B-Chat** | None | **50.93%** | None | **45.96%** |
214
 
215
  ---
216
 
@@ -218,14 +217,19 @@ This document summarizes the evaluation results for various language models base
218
 
219
  In the repository, there is an `eval.py` script that can be used to run the evaluation for any other LLM.
220
 
221
- - The evaluation results are based on the specific dataset and methodology employed.
222
  - The "First Token Accuracy" metric emphasizes the accuracy of predicting the initial token correctly.
223
  - Further analysis might be needed to determine the models' suitability for specific tasks.
224
 
 
 
 
 
 
225
  ---
226
 
227
- **Contributors**
228
- - [Gele](https://huggingface.co/Geleliong)
229
- - [Ken Boon](https://huggingface.co/caibcai)
230
- - [Wei Wen](https://huggingface.co/WeiWen21)
231
 
 
192
 
193
  This document summarizes the evaluation results for various language models based on **5-shot** and **First Token Accuracy**. The evaluation was conducted across four configurations:
194
 
 
195
  | **Model** | **en\_withfigures** | **en\_withoutfigures** | **ms\_withfigures** | **ms\_withoutfigures** |
196
  | --------------------------------- | ------------------- | ---------------------- | ------------------- | ---------------------- |
197
+ | **gemini-2.0-flash-exp** | **63.70%** | <ins>75.16%</ins> | **63.36%** | <ins>75.47%</ins> |
198
+ | **gemini-1.5-flash** | 49.66% | 67.39% | 50.00% | 64.28% |
199
+ | **Qwen/Qwen2-VL-72B-Instruct** | <ins>58.22%</ins> | 69.25% | <ins>57.53%</ins> | 63.66% |
200
+ | **gpt-4o** | 47.95% | 66.15% | 50.00% | 68.01% |
201
+ | **gpt-4o-mini** | 41.10% | 55.90% | 38.36% | 52.80% |
202
+ | **pixtral-large-2411** | 42.81% | 64.29% | 35.27% | 60.87% |
203
+ | **pixtral-12b-2409** | 24.66% | 48.45% | 24.66% | 39.13% |
204
+ | **DeepSeek-V3** | None | **79.19%** | None | **76.40%** |
205
+ | **Qwen2.5-72B-Instruct** | None | 74.53% | None | 72.98% |
206
+ | **Meta-Llama-3.3-70B-Instruct** | None | 67.08% | None | 58.07% |
207
+ | **Llama-3.2-90B-Vision-Instruct** | None | 65.22% | None | 58.07% |
208
+ | **sail/Sailor2-20B-Chat** | None | 66.46% | None | 61.68% |
209
+ | **mallam-small** | None | 61.49% | None | 55.28% |
210
+ | **mistral-large-latest** | None | 60.56% | None | 53.42% |
211
+ | **google/gemma-2-27b-it** | None | 58.07% | None | 57.76% |
212
+ | **SeaLLMs-v3-7B-Chat** | None | 50.93% | None | 45.96% |
213
 
214
  ---
215
 
 
217
 
218
  In the repository, there is an `eval.py` script that can be used to run the evaluation for any other LLM.
219
 
220
+ The evaluation results are based on the specific dataset and methodology employed.
221
  - The "First Token Accuracy" metric emphasizes the accuracy of predicting the initial token correctly.
222
  - Further analysis might be needed to determine the models' suitability for specific tasks.
223
 
224
+ ### Attribution for Evaluation Code
225
+ The `eval.py` script is based on work from the MMLU-Pro repository:
226
+ - Repository: [TIGER-AI-Lab/MMLU-Pro](https://github.com/TIGER-AI-Lab/MMLU-Pro)
227
+ - License: Apache License 2.0 (included in the `NOTICE` file)
228
+
229
  ---
230
 
231
+ # **Contributors**
232
+ - [**Gele**](https://huggingface.co/Geleliong)
233
+ - [**Ken Boon**](https://huggingface.co/caibcai)
234
+ - [**Wei Wen**](https://huggingface.co/WeiWen21)
235