use a new random generator
Browse files- Caltech-101.py +3 -8
Caltech-101.py
CHANGED
@@ -259,10 +259,7 @@ class Caltech101(datasets.GeneratorBasedBuilder):
|
|
259 |
|
260 |
is_train_split = split == "train"
|
261 |
|
262 |
-
|
263 |
-
# called for the train and test splits.
|
264 |
-
numpy_original_state = np.random.get_state()
|
265 |
-
np.random.seed(1234)
|
266 |
|
267 |
for class_dir in img_dir.iterdir():
|
268 |
class_name = class_dir.name
|
@@ -277,10 +274,10 @@ class Caltech101(datasets.GeneratorBasedBuilder):
|
|
277 |
raise ValueError(
|
278 |
f"Fewer than {_TRAIN_POINTS_PER_CLASS} ({len(index_codes)}) points in class {class_dir.name}"
|
279 |
)
|
280 |
-
|
281 |
-
train_indices = np.random.choice(
|
282 |
index_codes, _TRAIN_POINTS_PER_CLASS, replace=False
|
283 |
)
|
|
|
284 |
test_indices = set(index_codes).difference(train_indices)
|
285 |
|
286 |
indices_to_emit = train_indices if is_train_split else test_indices
|
@@ -315,5 +312,3 @@ class Caltech101(datasets.GeneratorBasedBuilder):
|
|
315 |
"box_coord": data["box_coord"],
|
316 |
}
|
317 |
yield f"{class_dir.name.lower()}/{f'image_{indice}.jpg'}", record
|
318 |
-
# Resets the seeds to their previous states.
|
319 |
-
np.random.set_state(numpy_original_state)
|
|
|
259 |
|
260 |
is_train_split = split == "train"
|
261 |
|
262 |
+
rng = np.random.default_rng(1234)
|
|
|
|
|
|
|
263 |
|
264 |
for class_dir in img_dir.iterdir():
|
265 |
class_name = class_dir.name
|
|
|
274 |
raise ValueError(
|
275 |
f"Fewer than {_TRAIN_POINTS_PER_CLASS} ({len(index_codes)}) points in class {class_dir.name}"
|
276 |
)
|
277 |
+
train_indices = rng.choice(
|
|
|
278 |
index_codes, _TRAIN_POINTS_PER_CLASS, replace=False
|
279 |
)
|
280 |
+
|
281 |
test_indices = set(index_codes).difference(train_indices)
|
282 |
|
283 |
indices_to_emit = train_indices if is_train_split else test_indices
|
|
|
312 |
"box_coord": data["box_coord"],
|
313 |
}
|
314 |
yield f"{class_dir.name.lower()}/{f'image_{indice}.jpg'}", record
|
|
|
|