File size: 2,464 Bytes
0c361b3
286ae8f
19e7c74
e42712a
19e7c74
 
 
 
 
 
 
 
e42712a
19e7c74
 
 
 
 
 
 
ddbb223
 
19e7c74
ddbb223
19e7c74
 
 
ddbb223
19e7c74
eabd2ab
19e7c74
 
 
eabd2ab
19e7c74
 
 
 
 
ddbb223
ecde23c
216c016
ecde23c
216c016
 
ecde23c
216c016
ecde23c
216c016
 
ecde23c
 
216c016
ecde23c
19e7c74
ecde23c
216c016
ecde23c
216c016
 
ecde23c
216c016
 
 
ecde23c
216c016
ecde23c
19e7c74
ecde23c
216c016
 
 
 
19e7c74
216c016
 
ecde23c
 
216c016
ecde23c
216c016
ecde23c
216c016
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
---
configs:
- config_name: task1
  dataset_name: "CUET-NLP/BHM-Bengali-Hateful-Memes"  # Add this line to explicitly set namespace
  data_files:
  - split: train
    path: data/train-task1.csv
  - split: valid
    path: data/valid-task1.csv
  - split: test
    path: data/test-task1.csv
- config_name: task2
  dataset_name: "CUET-NLP/BHM-Bengali-Hateful-Memes"
  data_files:
  - split: train
    path: data/train-task2.csv
  - split: valid
    path: data/valid-task2.csv
  - split: test
    path: data/test-task2.csv
license: mit
language:
- bn
tags:
- Hateful-Memes
- Multimodal
- Bengali
size_categories:
- 1K<n<10K
task_categories:
- other
- image-classification
- image-to-text
dataset_info:
- images_path: Memes/
  columns:
  - image_name: string
  - Captions: string
  - Labels: int32
---

## Dataset Description

**BHM** is a novel multimodal dataset for Bengali Hateful Memes detection. The dataset consists of **7,148** memes with Bengali as well as code-mixed captions, 
tailored for two tasks: (i) detecting hateful memes and (ii) detecting the social entities they target (i.e., Individual, Organization, Community, and Society).

## Paper Information

- Paper: https://aclanthology.org/2024.acl-long.454/
- Code: https://github.com/eftekhar-hossain/Bengali-Hateful-Memes/tree/main


### Data Downloading

The data examples were divided into three subsets for each task: *train*, *valid*, and *test*.

You can download this dataset by the following command (make sure that you have installed [Huggingface Datasets](https://huggingface.co/docs/datasets/quickstart)):

```python
from datasets import load_dataset

task1 = load_dataset("Eftekhar/BHM-Bengali-Hateful-Memes", "task1")  # Binary Classification
task2 = load_dataset("Eftekhar/BHM-Bengali-Hateful-Memes", "task2")  # Multiclass Classification
```

### Data Format

The dataset is provided in CSV format and contains the following attributes:

```csv
{
    "image_name": [string] The name of the image,
    "Captions": [string] Embedded text on the corresponding images
    "Labels": [string] Class labels.   
}
```


## Citation

If you use the **BHM** dataset in your work, please kindly cite the paper using this BibTeX:

```
@article{hossain2024deciphering,
  title={Deciphering Hate: Identifying Hateful Memes and Their Targets},
  author={Hossain, Eftekhar and Sharif, Omar and Hoque, Mohammed Moshiul and Preum, Sarah M},
  journal={arXiv preprint arXiv:2403.10829},
  year={2024}
}
```