File size: 6,450 Bytes
0dd73f3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6de5ba5
0dd73f3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
import torch
import torch.nn as nn
from transformers import PreTrainedModel, AutoTokenizer
from .configuration_gpt2vision import GPT2VisionConfig ,GPT2Config
from .modeling_gpt2 import GPT2LMHeadModel
from .vision_encoder import VisionEncoder

IMAGE_TOKEN = "<image>"
ANSWER_EOS = "<|endoftext|>"

def resize_token_embeds(model_name="openai-community/gpt2"):
    tokenizer = AutoTokenizer.from_pretrained(model_name)
    tokenizer.add_special_tokens({"additional_special_tokens": [IMAGE_TOKEN]})
    return tokenizer

tokenizer = resize_token_embeds()

print("tokenizer",tokenizer)
def create_labels(input_ids, tokenizer, attention_mask):
    labels = input_ids.clone()
    
    labels[attention_mask == 0] = -100

    answer_start_tokens = tokenizer.encode("Answer:", add_special_tokens=False)

    for i, seq in enumerate(input_ids):
        # Find the start of the answer
        answer_start = (seq == answer_start_tokens[0]).nonzero(as_tuple=True)[0]
        if len(answer_start) > 0:
            answer_start = answer_start[0]
            if seq[answer_start:answer_start+len(answer_start_tokens)].tolist() == answer_start_tokens:
                # Mask out everything before the answer
                labels[i, :answer_start] = -100
                
                # Find the end of the sequence (last non-padding token)
                sequence_end = attention_mask[i].nonzero(as_tuple=True)[0][-1]
                
                # Keep the last token (EOS) as part of the label
                labels[i, sequence_end+1:] = -100

    return labels
    
class MLP(nn.Module):
    def __init__(self, in_features: int, hidden_features: int = None, out_features: int = None):
        super().__init__()
        out_features = out_features or in_features
        hidden_features = hidden_features or in_features
        self.fc1 = nn.Linear(in_features, hidden_features)
        self.act = nn.GELU(approximate="tanh")
        self.fc2 = nn.Linear(hidden_features, out_features)
        self.dropout = nn.Dropout(p=0.1)

        # Initialize weights
        nn.init.xavier_normal_(self.fc1.weight)
        nn.init.zeros_(self.fc1.bias)
        nn.init.xavier_normal_(self.fc2.weight)
        nn.init.zeros_(self.fc2.bias)

    def forward(self, x: torch.Tensor) -> torch.Tensor:
        x = self.fc1(x)
        x = self.act(x)
        x = self.dropout(x)
        x = self.fc2(x)
        return x


class GPT2Vision(PreTrainedModel):
    config_class = GPT2VisionConfig

    def __init__(self, config):
        super().__init__(config)
        self.vision_encoder = VisionEncoder()
        self.mlp = MLP(in_features=768, hidden_features=768 * 4, out_features=768)

        self.language_model = GPT2LMHeadModel(config.gpt2_config)

        self.language_model.resize_token_embeddings(len(tokenizer))
        
        self.tokenizer = tokenizer
        tokenizer.pad_token = tokenizer.eos_token

        self.image_token_id = self.tokenizer.convert_tokens_to_ids(IMAGE_TOKEN)

    @property
    def device(self):
        return next(self.language_model.parameters()).device

    def freeze_model_components(self, freeze_vision=True, freeze_language=True,freeze_mlp=True):
        for param in self.vision_encoder.parameters():
            param.requires_grad = not freeze_vision
        for param in self.language_model.parameters():
            param.requires_grad = not freeze_language
        for param in self.mlp.parameters():
            param.requires_grad = not freeze_mlp

    def tokenize_encode(self, batch, device):
        text = batch['text']
        images = batch['image']

        if isinstance(text, str):
            text = [text]

        input_texts = [f"{IMAGE_TOKEN}{t}" for t in text]
        text_inputs = self.tokenizer(
            input_texts,
            padding='max_length',
            truncation=True,
            max_length=384,
            return_tensors="pt",
            pad_to_multiple_of=8,
        ).to(device)

        pixel_values = self.vision_encoder(images,device)

        return {
            "input_ids": text_inputs.input_ids,
            "attention_mask": text_inputs.attention_mask,
            "pixel_values": pixel_values
        }
        
    def preprocess_inputs(self, batch):
        pixel_values = batch['pixel_values'].squeeze(1)
        input_ids = batch['input_ids'].squeeze(1)
        attention_mask = batch['attention_mask'].squeeze(1)

        input_ids = input_ids.to(self.device)
        attention_mask = attention_mask.to(self.device)
        pixel_values = pixel_values.to(self.device)

        labels = create_labels(input_ids, self.tokenizer, attention_mask)
        labels = labels.to(self.device)
        
        img_embs = self.mlp(pixel_values)
        tok_embs = self.language_model.get_input_embeddings()(input_ids)

        inputs_embeds = torch.cat((tok_embs[:, 0:1, :], img_embs, tok_embs[:, 1:, :]), dim=1)

        img_attention = torch.ones((img_embs.size(0), img_embs.size(1)), dtype=torch.long, device=self.device)
        attention_mask = torch.cat((attention_mask[:, 0:1], img_attention, attention_mask[:, 1:]), dim=1)

        img_labels = torch.full((labels.size(0), img_embs.size(1)), fill_value=-100, dtype=torch.long, device=self.device)
        labels = torch.cat((labels[:, 0:1], img_labels, labels[:, 1:]), dim=1)
        return inputs_embeds, attention_mask, input_ids, labels

    def forward(self, batch, **kwargs):
        inputs_embeds, attention_mask, input_ids, labels = self.preprocess_inputs(batch)
        outputs = self.language_model(inputs_embeds=inputs_embeds, attention_mask=attention_mask, labels=labels)
        
        
        return outputs
    
    def generate(self, question, image, max_new_tokens=30, **kwargs):
        prompt =  prompt = f"Question: {question}\nAnswer:"
        batch = {"image": [image], "text": prompt}
        encoded_batch = self.tokenize_encode(batch, self.device)
        inputs_embeds, attention_mask, input_ids, _ = self.preprocess_inputs(encoded_batch)
 



        output_sequences = self.language_model.generate(
            inputs_embeds=inputs_embeds,
            attention_mask=attention_mask,
            max_new_tokens=max_new_tokens,
            pad_token_id=self.tokenizer.eos_token_id,
            eos_token_id=self.tokenizer.eos_token_id,
            **kwargs
        )
        
        output = self.tokenizer.decode(output_sequences[0], skip_special_tokens=True)
        return output