Document Question Answering
Transformers
Safetensors
English
Inference Endpoints
chenghao commited on
Commit
98829b2
·
verified ·
1 Parent(s): 605d141

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +82 -152
README.md CHANGED
@@ -1,199 +1,129 @@
1
  ---
2
  library_name: transformers
3
- tags: []
 
 
 
 
 
 
4
  ---
5
 
6
- # Model Card for Model ID
7
-
8
- <!-- Provide a quick summary of what the model is/does. -->
9
-
10
 
 
11
 
12
  ## Model Details
13
 
14
  ### Model Description
15
 
16
- <!-- Provide a longer summary of what this model is. -->
17
-
18
- This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
19
-
20
- - **Developed by:** [More Information Needed]
21
- - **Funded by [optional]:** [More Information Needed]
22
- - **Shared by [optional]:** [More Information Needed]
23
- - **Model type:** [More Information Needed]
24
- - **Language(s) (NLP):** [More Information Needed]
25
- - **License:** [More Information Needed]
26
- - **Finetuned from model [optional]:** [More Information Needed]
27
-
28
- ### Model Sources [optional]
29
-
30
- <!-- Provide the basic links for the model. -->
31
-
32
- - **Repository:** [More Information Needed]
33
- - **Paper [optional]:** [More Information Needed]
34
- - **Demo [optional]:** [More Information Needed]
35
 
36
  ## Uses
37
 
38
- <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
-
40
- ### Direct Use
41
-
42
- <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
-
44
- [More Information Needed]
45
-
46
- ### Downstream Use [optional]
47
-
48
- <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
-
50
- [More Information Needed]
51
-
52
- ### Out-of-Scope Use
53
-
54
- <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
-
56
- [More Information Needed]
57
-
58
- ## Bias, Risks, and Limitations
59
-
60
- <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
-
62
- [More Information Needed]
63
-
64
- ### Recommendations
65
-
66
- <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
-
68
- Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
-
70
- ## How to Get Started with the Model
71
-
72
- Use the code below to get started with the model.
73
-
74
- [More Information Needed]
 
 
 
 
 
 
 
75
 
76
  ## Training Details
77
 
78
  ### Training Data
79
 
80
- <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
-
82
- [More Information Needed]
83
 
84
  ### Training Procedure
85
 
86
- <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
 
88
  #### Preprocessing [optional]
89
 
90
- [More Information Needed]
 
 
 
 
 
 
 
 
91
 
92
 
93
  #### Training Hyperparameters
94
 
95
- - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
 
 
 
 
 
 
 
 
 
 
 
 
96
 
97
  #### Speeds, Sizes, Times [optional]
98
 
99
- <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
-
101
- [More Information Needed]
102
 
103
  ## Evaluation
104
 
105
- <!-- This section describes the evaluation protocols and provides the results. -->
106
 
107
  ### Testing Data, Factors & Metrics
108
 
109
  #### Testing Data
110
 
111
- <!-- This should link to a Dataset Card if possible. -->
112
-
113
- [More Information Needed]
114
-
115
- #### Factors
116
-
117
- <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
-
119
- [More Information Needed]
120
 
121
  #### Metrics
122
 
123
- <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
-
125
- [More Information Needed]
126
 
127
  ### Results
128
 
129
- [More Information Needed]
130
 
131
  #### Summary
132
-
133
-
134
-
135
- ## Model Examination [optional]
136
-
137
- <!-- Relevant interpretability work for the model goes here -->
138
-
139
- [More Information Needed]
140
-
141
- ## Environmental Impact
142
-
143
- <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
-
145
- Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
-
147
- - **Hardware Type:** [More Information Needed]
148
- - **Hours used:** [More Information Needed]
149
- - **Cloud Provider:** [More Information Needed]
150
- - **Compute Region:** [More Information Needed]
151
- - **Carbon Emitted:** [More Information Needed]
152
-
153
- ## Technical Specifications [optional]
154
-
155
- ### Model Architecture and Objective
156
-
157
- [More Information Needed]
158
-
159
- ### Compute Infrastructure
160
-
161
- [More Information Needed]
162
-
163
- #### Hardware
164
-
165
- [More Information Needed]
166
-
167
- #### Software
168
-
169
- [More Information Needed]
170
-
171
- ## Citation [optional]
172
-
173
- <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
-
175
- **BibTeX:**
176
-
177
- [More Information Needed]
178
-
179
- **APA:**
180
-
181
- [More Information Needed]
182
-
183
- ## Glossary [optional]
184
-
185
- <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
-
187
- [More Information Needed]
188
-
189
- ## More Information [optional]
190
-
191
- [More Information Needed]
192
-
193
- ## Model Card Authors [optional]
194
-
195
- [More Information Needed]
196
-
197
- ## Model Card Contact
198
-
199
- [More Information Needed]
 
1
  ---
2
  library_name: transformers
3
+ license: mit
4
+ datasets:
5
+ - chenghao/sec-material-contracts-qa
6
+ - jordyvl/DUDE_subset_100val
7
+ language:
8
+ - en
9
+ pipeline_tag: document-question-answering
10
  ---
11
 
12
+ # Idefices2-EDGAR
 
 
 
13
 
14
+ Idefices2 8B fine-tuned on 800+ multi-page documents for Visual DocQA.
15
 
16
  ## Model Details
17
 
18
  ### Model Description
19
 
20
+ Finetuned form [Idefics2](https://huggingface.co/docs/transformers/main/en/model_doc/idefics2).
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
21
 
22
  ## Uses
23
 
24
+ ```python
25
+ import torch
26
+ from transformers import AutoProcessor, Idefics2ForConditionalGeneration, BitsAndBytesConfig
27
+ from datasets import load_from_disk
28
+
29
+ base_model = "HuggingFaceM4/idefics2-8b"
30
+ peft_model_id = "chenghao/idefics2-edgar"
31
+ quantization_config = BitsAndBytesConfig(
32
+ load_in_4bit=True,
33
+ bnb_4bit_quant_type="nf4",
34
+ bnb_4bit_use_double_quant=True,
35
+ bnb_4bit_compute_dtype=torch.float16
36
+ )
37
+ model = Idefics2ForConditionalGeneration.from_pretrained(
38
+ peft_model_id,
39
+ torch_dtype=torch.float16,
40
+ quantization_config=quantization_config,
41
+ )
42
+
43
+ model.eval()
44
+ processor = AutoProcessor.from_pretrained(base_model, do_image_splitting=True,
45
+ size={"longest_edge": 490, "shortest_edge": 350})
46
+ dataset = load_from_disk("local-dataset")
47
+ test_example = dataset["test"][30]
48
+ images, question, answer = test_example["images"], test_example["question"], test_example["answer"]
49
+
50
+ messages = [
51
+ {
52
+ "role": "user",
53
+ "content": [{"type": "image"} for _ in range(len(images))] + [{"type": "text", "text": question}],
54
+ },
55
+ ]
56
+ prompt = processor.apply_chat_template(messages, add_generation_prompt=True)
57
+ inputs = processor(text=prompt, images=images, return_tensors="pt").to("cuda")
58
+ with torch.no_grad():
59
+ generated_ids = model.generate(**inputs, max_new_tokens=1024)
60
+ generated_texts = processor.batch_decode(generated_ids, skip_special_tokens=True)
61
+ preds = [t.split("Assistant:", 1)[-1].strip() for t in generated_texts]
62
+ print(f"""
63
+ Question: {question}
64
+ Answer: {answer}
65
+ Prediction: {preds or 'N/A'}
66
+ """)
67
+ ```
68
 
69
  ## Training Details
70
 
71
  ### Training Data
72
 
73
+ [SEC Contract QA](https://huggingface.co/datasets/chenghao/sec-material-contracts-qa)
 
 
74
 
75
  ### Training Procedure
76
 
77
+ 10 epochs with QLoRA.
78
 
79
  #### Preprocessing [optional]
80
 
81
+ No image splitting due to memory limit.
82
+
83
+ ```python
84
+ processor = AutoProcessor.from_pretrained(
85
+ "HuggingFaceM4/idefics2-8b",
86
+ do_image_splitting=False,
87
+ size={"longest_edge": 490, "shortest_edge": 350}
88
+ )
89
+ ```
90
 
91
 
92
  #### Training Hyperparameters
93
 
94
+ ```python
95
+ quantization_config = BitsAndBytesConfig(
96
+ load_in_4bit=True,
97
+ bnb_4bit_quant_type="nf4",
98
+ bnb_4bit_use_double_quant=True,
99
+ bnb_4bit_compute_dtype=torch.float16
100
+ )
101
+ model = Idefics2ForConditionalGeneration.from_pretrained(
102
+ "HuggingFaceM4/idefics2-8b",
103
+ torch_dtype=torch.float16,
104
+ quantization_config=quantization_config,
105
+ )
106
+ ```
107
 
108
  #### Speeds, Sizes, Times [optional]
109
 
 
 
 
110
 
111
  ## Evaluation
112
 
113
+ TODO
114
 
115
  ### Testing Data, Factors & Metrics
116
 
117
  #### Testing Data
118
 
119
+ TODO
 
 
 
 
 
 
 
 
120
 
121
  #### Metrics
122
 
123
+ TODO
 
 
124
 
125
  ### Results
126
 
127
+ TODO
128
 
129
  #### Summary