--- license: apache-2.0 datasets: - takala/financial_phrasebank language: - en base_model: - answerdotai/ModernBERT-base pipeline_tag: text-classification metrics: - f1 - value: 0.9755 tags: - finance --- # Modern-FinBERT: Financial Sentiment Analysis `Modern-FinBERT` is a **pre-trained NLP model** designed for **financial sentiment analysis**. It extends the [`ModernBERT-large`](https://huggingface.co/answerdotai/ModernBERT-large) language model by further training it on a **large financial corpus**, making it highly specialized for **financial text classification**. For fine-tuning, the model leverages the **[Financial PhraseBank](https://www.researchgate.net/publication/251231107_Good_Debt_or_Bad_Debt_Detecting_Semantic_Orientations_in_Economic_Texts)** by Malo et al. (2014), a widely recognized benchmark dataset for financial sentiment analysis. ### Sentiment Labels The model generates a **softmax probability distribution** across three sentiment categories: - ✅ **Positive** - ❌ **Negative** - ⚖ **Neutral** For more technical insights on `ModernBERT`, check out the research paper: 🔍 **[ModernBERT Technical Details](https://arxiv.org/abs/2412.13663)** # How to use You can use this model with Transformers pipeline for sentiment analysis. ```bash pip install -U transformers ``` ```python from transformers import AutoTokenizer, AutoModelForSequenceClassification, pipeline # Load the pre-trained model and tokenizer model = AutoModelForSequenceClassification.from_pretrained('beethogedeon/Modern-FinBERT', num_labels=3) tokenizer = AutoTokenizer.from_pretrained('answerdotai/ModernBERT') # Initialize the NLP pipeline nlp = pipeline("text-classification", model=model, tokenizer=tokenizer) sentence = "Stocks rallied and the British pound gained." print(nlp(sentence)) ```