Update README.md
Browse files
README.md
CHANGED
@@ -13,17 +13,61 @@ metrics:
|
|
13 |
tags:
|
14 |
- finance
|
15 |
---
|
16 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
17 |
|
18 |
-
|
19 |
|
20 |
-
|
21 |
|
22 |
-
|
23 |
|
24 |
### Sentiment Labels
|
25 |
-
The model
|
26 |
|
27 |
- β
**Positive**
|
28 |
- β **Negative**
|
29 |
- β **Neutral**
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
13 |
tags:
|
14 |
- finance
|
15 |
---
|
16 |
+
---
|
17 |
+
license: apache-2.0
|
18 |
+
datasets:
|
19 |
+
- takala/financial_phrasebank
|
20 |
+
language:
|
21 |
+
- en
|
22 |
+
metrics:
|
23 |
+
- f1
|
24 |
+
base_model:
|
25 |
+
- answerdotai/ModernBERT-large
|
26 |
+
new_version: ProsusAI/finbert
|
27 |
+
pipeline_tag: text-classification
|
28 |
+
library_name: transformers
|
29 |
+
tags:
|
30 |
+
- finance
|
31 |
+
- sentiment
|
32 |
+
- financial-sentiment-analysis
|
33 |
+
- sentiment-analysis
|
34 |
+
widget:
|
35 |
+
- text: "Stocks rallied and the British pound gained."
|
36 |
+
---
|
37 |
|
38 |
+
# Modern-FinBERT: Financial Sentiment Analysis
|
39 |
|
40 |
+
`Modern-FinBERT` is a **pre-trained NLP model** designed for **financial sentiment analysis**. It extends the [`ModernBERT-large`](https://huggingface.co/answerdotai/ModernBERT-large) language model by further training it on a **large financial corpus**, making it highly specialized for **financial text classification**.
|
41 |
|
42 |
+
For fine-tuning, the model leverages the **[Financial PhraseBank](https://www.researchgate.net/publication/251231107_Good_Debt_or_Bad_Debt_Detecting_Semantic_Orientations_in_Economic_Texts)** by Malo et al. (2014), a widely recognized benchmark dataset for financial sentiment analysis.
|
43 |
|
44 |
### Sentiment Labels
|
45 |
+
The model generates a **softmax probability distribution** across three sentiment categories:
|
46 |
|
47 |
- β
**Positive**
|
48 |
- β **Negative**
|
49 |
- β **Neutral**
|
50 |
+
|
51 |
+
For more technical insights on `ModernBERT`, check out the research paper:
|
52 |
+
π **[ModernBERT Technical Details](https://arxiv.org/abs/2412.13663)**
|
53 |
+
|
54 |
+
# How to use
|
55 |
+
You can use this model with Transformers pipeline for sentiment analysis.
|
56 |
+
```bash
|
57 |
+
pip install -U transformers
|
58 |
+
```
|
59 |
+
|
60 |
+
```python
|
61 |
+
from transformers import AutoTokenizer, AutoModelForSequenceClassification, pipeline
|
62 |
+
|
63 |
+
# Load the pre-trained model and tokenizer
|
64 |
+
model = AutoModelForSequenceClassification.from_pretrained('beethogedeon/Modern-FinBERT', num_labels=3)
|
65 |
+
tokenizer = AutoTokenizer.from_pretrained('answerdotai/ModernBERT')
|
66 |
+
|
67 |
+
# Initialize the NLP pipeline
|
68 |
+
nlp = pipeline("text-classification", model=model, tokenizer=tokenizer)
|
69 |
+
|
70 |
+
sentence = "Stocks rallied and the British pound gained."
|
71 |
+
|
72 |
+
print(nlp(sentence))
|
73 |
+
```
|