|
from flask import Flask, render_template, request, jsonify
|
|
from PIL import Image
|
|
import numpy as np
|
|
import os
|
|
import tensorflow as tf
|
|
from tensorflow.keras.models import load_model
|
|
from tensorflow.keras.preprocessing import image
|
|
from tensorflow.keras.layers import (
|
|
Input,
|
|
Conv2D,
|
|
MaxPooling2D,
|
|
Flatten,
|
|
Dense,
|
|
BatchNormalization,
|
|
Activation,
|
|
Add,
|
|
Concatenate,
|
|
)
|
|
from tensorflow.keras.optimizers import Adam
|
|
from vit_keras import vit
|
|
|
|
app = Flask(__name__)
|
|
|
|
|
|
UPLOAD_FOLDER = 'uploads'
|
|
app.config['UPLOAD_FOLDER'] = UPLOAD_FOLDER
|
|
|
|
|
|
def transitional_block(x, filters):
|
|
x = Conv2D(filters, kernel_size=(3, 3), strides=(1, 1), padding='same')(x)
|
|
x = BatchNormalization()(x)
|
|
x = Activation('relu')(x)
|
|
x = MaxPooling2D(pool_size=(2, 2), strides=(2, 2))(x)
|
|
return x
|
|
|
|
|
|
def pointwise_conv_block(x, filters):
|
|
x = Conv2D(filters, kernel_size=(1, 1), strides=(1, 1), padding='same')(x)
|
|
x = BatchNormalization()(x)
|
|
x = Activation('relu')(x)
|
|
return x
|
|
|
|
|
|
input_shape = (224, 224, 3)
|
|
num_classes = 4
|
|
vit_model = vit.vit_b32(
|
|
image_size=input_shape[:2],
|
|
include_top=False,
|
|
pretrained=True,
|
|
pretrained_top=False,
|
|
classes=num_classes,
|
|
weights="imagenet21k",
|
|
)
|
|
|
|
|
|
for layer in vit_model.layers:
|
|
layer.trainable = False
|
|
|
|
|
|
def modified_vgg19(input_tensor):
|
|
|
|
x = Conv2D(64, kernel_size=(3, 3), strides=(1, 1), padding='same')(input_tensor)
|
|
x = BatchNormalization()(x)
|
|
x = Activation('relu')(x)
|
|
x = transitional_block(x, 64)
|
|
|
|
|
|
x = transitional_block(x, 128)
|
|
x = pointwise_conv_block(x, 128)
|
|
|
|
|
|
x = transitional_block(x, 256)
|
|
x = pointwise_conv_block(x, 256)
|
|
x = pointwise_conv_block(x, 256)
|
|
x = pointwise_conv_block(x, 256)
|
|
|
|
|
|
x = transitional_block(x, 512)
|
|
x = pointwise_conv_block(x, 512)
|
|
x = pointwise_conv_block(x, 512)
|
|
x = pointwise_conv_block(x, 512)
|
|
x = pointwise_conv_block(x, 512)
|
|
|
|
|
|
x = transitional_block(x, 512)
|
|
x = pointwise_conv_block(x, 512)
|
|
x = pointwise_conv_block(x, 512)
|
|
x = pointwise_conv_block(x, 512)
|
|
x = pointwise_conv_block(x, 512)
|
|
|
|
x = transitional_block(x, 1024)
|
|
x = pointwise_conv_block(x, 1024)
|
|
x = pointwise_conv_block(x, 1024)
|
|
x = pointwise_conv_block(x, 1024)
|
|
x = pointwise_conv_block(x, 1024)
|
|
|
|
x = Flatten()(x)
|
|
x = Dense(256, activation='relu')(x)
|
|
x = Dense(256, activation='relu')(x)
|
|
output_layer = Dense(4, activation='softmax')(x)
|
|
|
|
return output_layer
|
|
|
|
|
|
tf.keras.utils.get_custom_objects()['transitional_block'] = transitional_block
|
|
tf.keras.utils.get_custom_objects()['pointwise_conv_block'] = pointwise_conv_block
|
|
|
|
|
|
path = "C:\\Users\\HI BUDDY\\Desktop\\App\\poultryapp\\Poultry.h5"
|
|
|
|
loaded_model = load_model(path, custom_objects={
|
|
'transitional_block': transitional_block,
|
|
'pointwise_conv_block': pointwise_conv_block,
|
|
})
|
|
|
|
|
|
def preprocess_image(image_path):
|
|
img = image.load_img(image_path, target_size=(224, 224))
|
|
img_array = image.img_to_array(img)
|
|
img_array = np.expand_dims(img_array, axis=0)
|
|
img_array = img_array / 255.0
|
|
return img_array
|
|
|
|
|
|
def allowed_file(filename):
|
|
ALLOWED_EXTENSIONS = {'png', 'jpg', 'jpeg', 'gif'}
|
|
return '.' in filename and \
|
|
filename.rsplit('.', 1)[1].lower() in ALLOWED_EXTENSIONS
|
|
|
|
@app.route('/')
|
|
def index():
|
|
return render_template('index.html')
|
|
|
|
@app.route('/predict', methods=['POST'])
|
|
def predict():
|
|
|
|
if 'file' not in request.files:
|
|
return jsonify({'error': 'No file part'})
|
|
|
|
file = request.files['file']
|
|
|
|
|
|
if file.filename == '':
|
|
return jsonify({'error': 'No selected file'})
|
|
|
|
|
|
if file and allowed_file(file.filename):
|
|
|
|
if not os.path.exists(app.config['UPLOAD_FOLDER']):
|
|
os.makedirs(app.config['UPLOAD_FOLDER'])
|
|
|
|
img_path = os.path.join(app.config['UPLOAD_FOLDER'], file.filename)
|
|
file.save(img_path)
|
|
|
|
|
|
img_array = preprocess_image(img_path)
|
|
|
|
|
|
class_labels = ['cocci', 'healthy', 'ncd', 'salmo']
|
|
|
|
predictions = loaded_model.predict(img_array)
|
|
|
|
|
|
confidence_threshold = 0.50
|
|
|
|
|
|
max_confidence = np.max(predictions)
|
|
|
|
if max_confidence >= confidence_threshold:
|
|
predicted_class_index = np.argmax(predictions)
|
|
predicted_class_label = class_labels[predicted_class_index]
|
|
return jsonify({'prediction': predicted_class_label})
|
|
else:
|
|
return jsonify({'prediction': "This format is not supported"})
|
|
else:
|
|
return jsonify({'error': 'Invalid file format'})
|
|
|
|
if __name__ == '__main__':
|
|
app.run(debug=True)
|
|
|