--- library_name: peft base_model: rayonlabs/83847950-33bc-4506-ba82-48653a06540a tags: - axolotl - generated_from_trainer model-index: - name: 81e8adf2-9dfa-4f49-bd89-57c64afb2de4 results: [] --- [Built with Axolotl](https://github.com/axolotl-ai-cloud/axolotl)
See axolotl config axolotl version: `0.4.1` ```yaml adapter: lora base_model: rayonlabs/83847950-33bc-4506-ba82-48653a06540a bf16: true chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - f4b7f90f2a0ae91e_train_data.json ds_type: json format: custom path: /workspace/input_data/f4b7f90f2a0ae91e_train_data.json type: field_input: context field_instruction: question field_output: final_decision format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null device_map: auto do_eval: true early_stopping_patience: 5 eval_batch_size: 4 eval_max_new_tokens: 128 eval_steps: 150 eval_table_size: null evals_per_epoch: null flash_attention: true fp16: false fsdp: null fsdp_config: null gradient_accumulation_steps: 1 gradient_checkpointing: false group_by_length: false hub_model_id: auxyus/81e8adf2-9dfa-4f49-bd89-57c64afb2de4 hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 4.4e-05 load_in_4bit: false load_in_8bit: false local_rank: 0 logging_steps: 10 lora_alpha: 32 lora_dropout: 0.2 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 16 lora_target_linear: true lr_scheduler: cosine_with_restarts max_grad_norm: 1.0 max_memory: 0: 75GB max_steps: 600 micro_batch_size: 4 mlflow_experiment_name: /tmp/f4b7f90f2a0ae91e_train_data.json model_type: AutoModelForCausalLM num_epochs: 3 optim_args: adam_beta1: 0.9 adam_beta2: 0.999 adam_epsilon: 1e-08 optimizer: adamw_torch output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false save_steps: 150 save_total_limit: 1 saves_per_epoch: null sequence_len: 512 special_tokens: pad_token: <|end_of_text|> strict: false tf32: null tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: acopia-grant wandb_mode: online wandb_name: 53e001ba-f4ae-454f-a837-80c11f92d62b wandb_project: Gradients-On-2 wandb_run: your_name wandb_runid: 53e001ba-f4ae-454f-a837-80c11f92d62b warmup_ratio: 0.1 weight_decay: 0.01 xformers_attention: null ```

# 81e8adf2-9dfa-4f49-bd89-57c64afb2de4 This model is a fine-tuned version of [rayonlabs/83847950-33bc-4506-ba82-48653a06540a](https://huggingface.co/rayonlabs/83847950-33bc-4506-ba82-48653a06540a) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.0464 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 4.4e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=adam_beta1=0.9,adam_beta2=0.999,adam_epsilon=1e-08 - lr_scheduler_type: cosine_with_restarts - lr_scheduler_warmup_steps: 60 - training_steps: 600 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | No log | 0.0000 | 1 | 2.0931 | | 0.031 | 0.0030 | 150 | 0.0823 | | 0.0013 | 0.0060 | 300 | 0.0778 | | 0.0107 | 0.0090 | 450 | 0.0482 | | 0.0833 | 0.0120 | 600 | 0.0464 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1