--- tags: - ultralyticsplus - yolov5 - ultralytics - yolo - vision - object-detection - pytorch - indonesia - aksara - aksarajawa model-index: - name: ariffaizin19/yolov5-sewaka-detc results: - task: type: object-detection metrics: - type: precision # since mAP@0.5 is not available on hf.co/metrics value: 0.995 # min: 0.0 - max: 1.0 name: mAP@0.5(box) inference: false --- # YOLOv5 for Aksara Jawa
ariffaizin19/aksarajawa
## Supported Labels ```python [ '1 Ha', '2 Na', '3 Ca', '4 Ra', '5 Ka', '6 Da', '7 Ta', '8 Sa', '9 Wa', '10 La', '11 Pa', '12 Dha', '13 Ja', '14 Ya', '15 Nya', '16 Ma', '17 Ga', '18 Ba', '19 Tha', '20 Nga', '21 Pasangan Ha', '22 Pasangan Na', '23 Pasangan Ca', '24 Pasangan Ra', '25 Pasangan Ka', '26 Pasangan Da', '27 Pasangan Ta', '28 Pasangan Sa', '29 Pasangan Wa', '30 Pasangan La', '31 Pasangan Pa', '32 Pasangan Dha', '33 Pasangan Ja', '34 Pasangan Ya', '35 Pasangan Nya', '36 Pasangan Ma', '37 Pasangan Ga', '38 Pasangan Ba', '39 Pasangan Tha', '40 Pasangan Nga', '41 Wulu', '42 Pepet', '43 Suku', '44 Taling', '45 Taling Tarung', '46 Cecak', '47 Layar', '48 Pangkon', '49 Pengkol', '50 Wignyan', '51 Cakra', '52 Pa Cerek', '53 Nga Lelet', '54 Pada Lingsa', '55 Pada Madya', '56 Purwa Pada', '57 Murda Na', '58 Murda Ka', '59 Murda Ta', '60 Murda Sa', '61 Murda Pa', '63 Murda Ga', '64 Murda Ba', '67 Pasangan Murda Ga', '71 Pasangan Murda Ta', '73 Rekan Kha', '76 Rekan Za', '81 Pasangan Murda Za', '83 Swara A', '84 Swara E', '85 Swara U', '86 Swara I', '95 Mahaprana Sha', '97 Cakra Keret' ] ``` ## How to use - Install library `pip install yolov5==7.0.5 torch` ## Load model and perform prediction ```python import yolov5 from PIL import Image model = yolov5.load(models_id) model.overrides['conf'] = 0.25 # NMS confidence threshold model.overrides['iou'] = 0.45 # NMS IoU threshold model.overrides['max_det'] = 1000 # maximum number of detections per image # set image image = 'https://huggingface.co/spaces/ariffaizin19/yolov5-sewaka-detc/raw/main/test_images/example1.jpg' # perform inference results = model.predict(image) # observe results print(results[0].boxes) render = render_result(model=model, image=image, result=results[0]) render.show() ```