File size: 1,420 Bytes
1f409d3
 
 
 
 
 
 
 
 
 
 
be8fe82
1f409d3
 
78360d1
 
4dab39f
 
 
1683e12
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1f409d3
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
---
base_model: appvoid/arco
language:
- en
license: apache-2.0
tags:
- text-generation-inference
- transformers
- unsloth
- llama
- trl
- sft
---

experimental model to expose arco to some reasoning


after some research i notice i was finetuning models with super high lr, further models should be better since will maintain most of the power of arco

| Task         | Score | Metric    |
|--------------|-------|-----------|
| ARC Challenge| 0.3473| acc_norm  |
| HellaSwag    | 0.5986| acc_norm  |
| MMLU         | 0.2489| acc       |
| PIQA         | 0.7318| acc_norm  |
| Winogrande   | 0.6259| acc       |

This table presents the extracted scores in a clear, tabular format. The "Task" column shows the name of each benchmark, the "Score" column displays the corresponding value, and the "Metric" column indicates whether the score is acc_norm or acc.

format is this:

```
Instruction: <your instruction>
Reasoning: // starting from here, the model will start to generate the resoning and output
Output:
```

# Uploaded  model

- **Developed by:** appvoid
- **License:** apache-2.0
- **Finetuned from model :** appvoid/arco

This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library.

[<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)