--- library_name: transformers tags: - generated_from_trainer metrics: - accuracy model-index: - name: poison-distill results: [] --- # poison-distill This model is a fine-tuned version of [](https://huggingface.co/) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: -42.4617 - Accuracy: 0.6165 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 20 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | -1.7321 | 1.0 | 130 | -17.9718 | 0.4135 | | -10.3826 | 2.0 | 260 | -21.0786 | 0.4286 | | -15.9561 | 3.0 | 390 | -30.7402 | 0.3609 | | -20.4105 | 4.0 | 520 | -8.7054 | 0.6090 | | -23.6697 | 5.0 | 650 | -41.1276 | 0.5263 | | -28.1385 | 6.0 | 780 | -53.7167 | 0.4135 | | -30.4932 | 7.0 | 910 | -54.0164 | 0.3609 | | -33.5563 | 8.0 | 1040 | -49.4077 | 0.3233 | | -36.6955 | 9.0 | 1170 | -38.3125 | 0.5489 | | -38.8208 | 10.0 | 1300 | -42.4497 | 0.6842 | | -40.791 | 11.0 | 1430 | -37.1019 | 0.5789 | | -43.1559 | 12.0 | 1560 | -38.0363 | 0.3759 | | -45.1497 | 13.0 | 1690 | -81.5224 | 0.3609 | | -46.5745 | 14.0 | 1820 | -105.4418 | 0.3609 | | -47.6707 | 15.0 | 1950 | -70.0515 | 0.5639 | | -48.1727 | 16.0 | 2080 | -38.0205 | 0.3233 | | -50.192 | 17.0 | 2210 | -87.6547 | 0.5113 | | -50.2229 | 18.0 | 2340 | -103.3304 | 0.5263 | | -50.7076 | 19.0 | 2470 | -45.6348 | 0.5414 | | -51.8644 | 20.0 | 2600 | -37.3647 | 0.5940 | ### Framework versions - Transformers 4.46.3 - Pytorch 2.5.1+cu121 - Datasets 3.1.0 - Tokenizers 0.20.3