File size: 7,176 Bytes
1e1bace
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
"""Tokenization class for VITS."""

import json
import os
import re
from typing import Any, Dict, List, Optional, Tuple, Union

from transformers.tokenization_utils import PreTrainedTokenizer
from transformers.utils import logging


logger = logging.get_logger(__name__)

VOCAB_FILES_NAMES = {"vocab_file": "vocab.json"}


def has_non_roman_characters(input_string):
    # Find any character outside the ASCII range
    non_roman_pattern = re.compile(r"[^\x00-\x7F]")

    # Search the input string for non-Roman characters
    match = non_roman_pattern.search(input_string)
    has_non_roman = match is not None
    return has_non_roman


class IndicVitsTokenizer(PreTrainedTokenizer):
    """
    Construct a VITS tokenizer.

    This tokenizer inherits from [`PreTrainedTokenizer`] which contains most of the main methods. Users should refer to
    this superclass for more information regarding those methods.

    Args:
        vocab_file (`str`):
            Path to the vocabulary file.
        language (`str`, *optional*):
            Language identifier.
        add_blank (`bool`, *optional*, defaults to `True`):
            Whether to insert token id 0 in between the other tokens.
        normalize (`bool`, *optional*, defaults to `True`):
            Whether to normalize the input text by removing all casing and punctuation.
        phonemize (`bool`, *optional*, defaults to `True`):
            Whether to convert the input text into phonemes.
        is_uroman (`bool`, *optional*, defaults to `False`):
            Whether the `uroman` Romanizer needs to be applied to the input text prior to tokenizing.
    """

    vocab_files_names = VOCAB_FILES_NAMES
    model_input_names = ["input_ids", "attention_mask"]

    def __init__(
        self,
        vocab_file,
        pad_token="<pad>",
        unk_token="<unk>",
        language=None,
        add_blank=True,
        normalize=True,
        phonemize=True,
        is_uroman=False,
        **kwargs,
    ) -> None:
        with open(vocab_file, encoding="utf-8") as vocab_handle:
            self.encoder = json.load(vocab_handle)

        self.decoder = {v: k for k, v in self.encoder.items()}
        self.language = language
        self.add_blank = add_blank
        self.normalize = normalize
        self.phonemize = phonemize

        self.is_uroman = is_uroman

        super().__init__(
            pad_token=pad_token,
            unk_token=unk_token,
            language=language,
            add_blank=add_blank,
            normalize=normalize,
            phonemize=phonemize,
            is_uroman=is_uroman,
            **kwargs,
        )

    @property
    def vocab_size(self):
        return len(self.encoder)

    def get_vocab(self):
        vocab = {self.convert_ids_to_tokens(i): i for i in range(self.vocab_size)}
        vocab.update(self.added_tokens_encoder)
        return vocab

    def normalize_text(self, input_string):
        """Lowercase the input string, respecting any special token ids that may be part or entirely upper-cased."""
        all_vocabulary = list(self.encoder.keys()) + list(self.added_tokens_encoder.keys())
        filtered_text = ""

        i = 0
        while i < len(input_string):
            found_match = False
            for word in all_vocabulary:
                if input_string[i : i + len(word)] == word:
                    filtered_text += word
                    i += len(word)
                    found_match = True
                    break

            if not found_match:
                filtered_text += input_string[i].lower()
                i += 1

        return filtered_text

    def prepare_for_tokenization(
        self, text: str, is_split_into_words: bool = False, normalize: Optional[bool] = None, **kwargs
    ) -> Tuple[str, Dict[str, Any]]:
        """
        Performs any necessary transformations before tokenization.

        This method should pop the arguments from kwargs and return the remaining `kwargs` as well. We test the
        `kwargs` at the end of the encoding process to be sure all the arguments have been used.

        Args:
            text (`str`):
                The text to prepare.
            is_split_into_words (`bool`, *optional*, defaults to `False`):
                Whether or not the input is already pre-tokenized (e.g., split into words). If set to `True`, the
                tokenizer assumes the input is already split into words (for instance, by splitting it on whitespace)
                which it will tokenize.
            normalize (`bool`, *optional*, defaults to `None`):
                Whether or not to apply punctuation and casing normalization to the text inputs. Typically, VITS is
                trained on lower-cased and un-punctuated text. Hence, normalization is used to ensure that the input
                text consists only of lower-case characters.
            kwargs (`Dict[str, Any]`, *optional*):
                Keyword arguments to use for the tokenization.

        Returns:
            `Tuple[str, Dict[str, Any]]`: The prepared text and the unused kwargs.
        """
        normalize = normalize if normalize is not None else self.normalize

        if normalize:
            # normalise for casing
            text = self.normalize_text(text)

        # strip any chars outside of the vocab (punctuation)
        text = "".join(list(filter(lambda char: char in self.encoder, text))).strip()
        return text, kwargs

    def _tokenize(self, text: str) -> List[str]:
        """Tokenize a string by inserting the `<pad>` token at the boundary between adjacent characters."""
        tokens = list(text)
        
        return tokens

    def convert_tokens_to_string(self, tokens: List[str]) -> str:
        if self.add_blank and len(tokens) > 1:
            tokens = tokens[1::2]
        return "".join(tokens)
    
    def convert_tokens_to_ids(self, tokens: List[str]) -> List[int]:
        ids = []
        for token in tokens:
            ids.append(self._convert_token_to_id(token))

        if self.add_blank:
            interspersed = [0] * (len(ids) * 2 + 1)
            interspersed[1::2] = ids
            ids = interspersed
            
        return ids

    def _convert_token_to_id(self, token):
        """Converts a token (str) in an id using the vocab."""
        return self.encoder.get(token, self.encoder.get(self.unk_token))

    def _convert_id_to_token(self, index):
        """Converts an index (integer) in a token (str) using the vocab."""
        return self.decoder.get(index)

    def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Union[Tuple[str], None]:
        if not os.path.isdir(save_directory):
            logger.error(f"Vocabulary path ({save_directory}) should be a directory")
            return

        vocab_file = os.path.join(
            save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"]
        )

        with open(vocab_file, "w", encoding="utf-8") as f:
            f.write(json.dumps(self.encoder, indent=2, sort_keys=True, ensure_ascii=False) + "\n")

        return (vocab_file,)