--- library_name: transformers license: llama2 base_model: lmsys/vicuna-7b-v1.5 tags: - generated_from_trainer model-index: - name: vicuna_7b_stage1 results: [] --- [Built with Axolotl](https://github.com/OpenAccess-AI-Collective/axolotl) # vicuna_7b_stage1 This model is a fine-tuned version of [lmsys/vicuna-7b-v1.5](https://huggingface.co/lmsys/vicuna-7b-v1.5) on the None dataset. It achieves the following results on the evaluation set: - Loss: nan ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0005 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - distributed_type: multi-GPU - num_devices: 4 - gradient_accumulation_steps: 4 - total_train_batch_size: 32 - total_eval_batch_size: 8 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 40 - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 3.0038 | 0.0410 | 40 | nan | | 2.881 | 0.0821 | 80 | nan | | 2.7344 | 0.1231 | 120 | nan | | 2.7523 | 0.1641 | 160 | nan | | 2.8974 | 0.2051 | 200 | nan | | 2.8822 | 0.2462 | 240 | nan | | 2.8679 | 0.2872 | 280 | nan | | 2.8764 | 0.3282 | 320 | nan | | 2.7328 | 0.3692 | 360 | nan | | 2.6559 | 0.4103 | 400 | nan | | 2.9797 | 0.4513 | 440 | nan | | 2.6416 | 0.4923 | 480 | nan | | 2.5732 | 0.5333 | 520 | nan | | 2.5785 | 0.5744 | 560 | nan | | 2.6892 | 0.6154 | 600 | nan | | 2.5908 | 0.6564 | 640 | nan | | 2.5158 | 0.6974 | 680 | nan | | 2.43 | 0.7385 | 720 | nan | | 2.4511 | 0.7795 | 760 | nan | | 2.3835 | 0.8205 | 800 | nan | | 2.1151 | 0.8615 | 840 | nan | | 2.4363 | 0.9026 | 880 | nan | | 2.3235 | 0.9436 | 920 | nan | | 2.2581 | 0.9846 | 960 | nan | | 2.1462 | 1.0256 | 1000 | nan | | 2.163 | 1.0667 | 1040 | nan | | 2.2433 | 1.1077 | 1080 | nan | | 2.0609 | 1.1487 | 1120 | nan | | 1.9598 | 1.1897 | 1160 | nan | | 2.1146 | 1.2308 | 1200 | nan | | 2.0555 | 1.2718 | 1240 | nan | | 1.8906 | 1.3128 | 1280 | nan | | 1.8369 | 1.3538 | 1320 | nan | | 1.9503 | 1.3949 | 1360 | nan | | 1.8217 | 1.4359 | 1400 | nan | | 1.9437 | 1.4769 | 1440 | nan | | 1.7392 | 1.5179 | 1480 | nan | | 1.7494 | 1.5590 | 1520 | nan | | 1.7624 | 1.6 | 1560 | nan | | 1.7191 | 1.6410 | 1600 | nan | | 1.8216 | 1.6821 | 1640 | nan | | 1.7724 | 1.7231 | 1680 | nan | | 1.78 | 1.7641 | 1720 | nan | | 1.5865 | 1.8051 | 1760 | nan | | 1.7514 | 1.8462 | 1800 | nan | | 1.7128 | 1.8872 | 1840 | nan | | 1.8041 | 1.9282 | 1880 | nan | | 1.6393 | 1.9692 | 1920 | nan | ### Framework versions - Transformers 4.45.2 - Pytorch 2.6.0.dev20241122+rocm6.2 - Datasets 2.14.7 - Tokenizers 0.20.3