--- library_name: transformers license: llama2 base_model: lmsys/vicuna-7b-v1.5 tags: - generated_from_trainer model-index: - name: vicuna_7b_stage1_flash results: [] --- [Built with Axolotl](https://github.com/OpenAccess-AI-Collective/axolotl) # vicuna_7b_stage1_flash This model is a fine-tuned version of [lmsys/vicuna-7b-v1.5](https://huggingface.co/lmsys/vicuna-7b-v1.5) on the None dataset. It achieves the following results on the evaluation set: - Loss: nan ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0005 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - distributed_type: multi-GPU - num_devices: 4 - gradient_accumulation_steps: 4 - total_train_batch_size: 32 - total_eval_batch_size: 8 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 40 - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 3.0038 | 0.0410 | 40 | nan | | 2.8811 | 0.0821 | 80 | nan | | 2.7369 | 0.1231 | 120 | nan | | 2.7568 | 0.1641 | 160 | nan | | 2.9021 | 0.2051 | 200 | nan | | 2.8989 | 0.2462 | 240 | nan | | 2.8846 | 0.2872 | 280 | nan | | 2.9066 | 0.3282 | 320 | nan | | 2.7595 | 0.3692 | 360 | nan | | 2.698 | 0.4103 | 400 | nan | | 3.0317 | 0.4513 | 440 | nan | | 2.7174 | 0.4923 | 480 | nan | | 2.6518 | 0.5333 | 520 | nan | | 2.6698 | 0.5744 | 560 | nan | | 2.8094 | 0.6154 | 600 | nan | | 2.721 | 0.6564 | 640 | nan | | 2.679 | 0.6974 | 680 | nan | | 2.5793 | 0.7385 | 720 | nan | | 2.6417 | 0.7795 | 760 | nan | | 2.5729 | 0.8205 | 800 | nan | | 2.3099 | 0.8615 | 840 | nan | | 2.6534 | 0.9026 | 880 | nan | | 2.5593 | 0.9436 | 920 | nan | | 2.4978 | 0.9846 | 960 | nan | | 2.4152 | 1.0256 | 1000 | nan | | 2.44 | 1.0667 | 1040 | nan | | 2.5566 | 1.1077 | 1080 | nan | | 2.336 | 1.1487 | 1120 | nan | | 2.2365 | 1.1897 | 1160 | nan | | 2.4516 | 1.2308 | 1200 | nan | | 2.3756 | 1.2718 | 1240 | nan | | 2.1703 | 1.3128 | 1280 | nan | | 2.1208 | 1.3538 | 1320 | nan | | 2.2553 | 1.3949 | 1360 | nan | | 2.1051 | 1.4359 | 1400 | nan | | 2.2217 | 1.4769 | 1440 | nan | | 2.0144 | 1.5179 | 1480 | nan | | 2.0047 | 1.5590 | 1520 | nan | | 2.0336 | 1.6 | 1560 | nan | | 1.9599 | 1.6410 | 1600 | nan | | 2.0869 | 1.6821 | 1640 | nan | | 1.9917 | 1.7231 | 1680 | nan | | 2.0273 | 1.7641 | 1720 | nan | | 1.7805 | 1.8051 | 1760 | nan | | 1.9446 | 1.8462 | 1800 | nan | | 1.9071 | 1.8872 | 1840 | nan | | 1.9767 | 1.9282 | 1880 | nan | | 1.7796 | 1.9692 | 1920 | nan | | 1.9373 | 2.0103 | 1960 | nan | | 1.6333 | 2.0513 | 2000 | nan | | 1.7957 | 2.0923 | 2040 | nan | | 1.6708 | 2.1333 | 2080 | nan | | 1.7508 | 2.1744 | 2120 | nan | | 1.6658 | 2.2154 | 2160 | nan | | 1.5108 | 2.2564 | 2200 | nan | | 1.6733 | 2.2974 | 2240 | nan | | 1.6248 | 2.3385 | 2280 | nan | | 1.5717 | 2.3795 | 2320 | nan | | 1.6168 | 2.4205 | 2360 | nan | | 1.6815 | 2.4615 | 2400 | nan | | 1.6728 | 2.5026 | 2440 | nan | | 1.6679 | 2.5436 | 2480 | nan | | 1.6393 | 2.5846 | 2520 | nan | | 1.5578 | 2.6256 | 2560 | nan | | 1.5701 | 2.6667 | 2600 | nan | | 1.7143 | 2.7077 | 2640 | nan | | 1.5139 | 2.7487 | 2680 | nan | | 1.7144 | 2.7897 | 2720 | nan | | 1.6629 | 2.8308 | 2760 | nan | | 1.5304 | 2.8718 | 2800 | nan | | 1.5267 | 2.9128 | 2840 | nan | | 1.5946 | 2.9538 | 2880 | nan | | 1.6313 | 2.9949 | 2920 | nan | ### Framework versions - Transformers 4.45.2 - Pytorch 2.6.0.dev20241122+rocm6.2 - Datasets 2.14.7 - Tokenizers 0.20.3