Upload 9 files
Browse files- code/code_adaptations_audiocraft/audiocraft_lm_generate.py +534 -0
- code/code_adaptations_audiocraft/important_note.md +6 -0
- code/inference/gradio_app/app.py +78 -0
- code/inference/inference.py +117 -0
- code/inference/inference_utils.py +283 -0
- code/training/__init__.py +0 -0
- code/training/training.py +239 -0
- code/training/training_conf.yml +47 -0
- code/training/training_utils.py +282 -0
code/code_adaptations_audiocraft/audiocraft_lm_generate.py
ADDED
@@ -0,0 +1,534 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
2 |
+
# All rights reserved.
|
3 |
+
#
|
4 |
+
# This source code is licensed under the license found in the
|
5 |
+
# LICENSE file in the root directory of this source tree.
|
6 |
+
|
7 |
+
from dataclasses import dataclass
|
8 |
+
from functools import partial
|
9 |
+
import logging
|
10 |
+
import math
|
11 |
+
import typing as tp
|
12 |
+
|
13 |
+
import torch
|
14 |
+
from torch import nn
|
15 |
+
|
16 |
+
from audiocraft.utils import utils
|
17 |
+
from audiocraft.modules.streaming import StreamingModule, State
|
18 |
+
from audiocraft.modules.transformer import StreamingTransformer, create_norm_fn
|
19 |
+
from audiocraft.modules.conditioners import (
|
20 |
+
ConditionFuser,
|
21 |
+
ClassifierFreeGuidanceDropout,
|
22 |
+
AttributeDropout,
|
23 |
+
ConditioningProvider,
|
24 |
+
ConditioningAttributes,
|
25 |
+
ConditionType,
|
26 |
+
)
|
27 |
+
from audiocraft.modules.codebooks_patterns import CodebooksPatternProvider
|
28 |
+
from audiocraft.modules.activations import get_activation_fn
|
29 |
+
|
30 |
+
|
31 |
+
logger = logging.getLogger(__name__)
|
32 |
+
ConditionTensors = tp.Dict[str, ConditionType]
|
33 |
+
CFGConditions = tp.Union[ConditionTensors, tp.Tuple[ConditionTensors, ConditionTensors]]
|
34 |
+
|
35 |
+
|
36 |
+
def get_init_fn(method: str, input_dim: int, init_depth: tp.Optional[int] = None):
|
37 |
+
"""LM layer initialization.
|
38 |
+
Inspired from xlformers: https://github.com/fairinternal/xlformers
|
39 |
+
|
40 |
+
Args:
|
41 |
+
method (str): Method name for init function. Valid options are:
|
42 |
+
'gaussian', 'uniform'.
|
43 |
+
input_dim (int): Input dimension of the initialized module.
|
44 |
+
init_depth (int, optional): Optional init depth value used to rescale
|
45 |
+
the standard deviation if defined.
|
46 |
+
"""
|
47 |
+
# Compute std
|
48 |
+
std = 1 / math.sqrt(input_dim)
|
49 |
+
# Rescale with depth
|
50 |
+
if init_depth is not None:
|
51 |
+
std = std / math.sqrt(2 * init_depth)
|
52 |
+
|
53 |
+
if method == 'gaussian':
|
54 |
+
return partial(
|
55 |
+
torch.nn.init.trunc_normal_, mean=0.0, std=std, a=-3 * std, b=3 * std
|
56 |
+
)
|
57 |
+
elif method == 'uniform':
|
58 |
+
bound = math.sqrt(3) * std # ensure the standard deviation is `std`
|
59 |
+
return partial(torch.nn.init.uniform_, a=-bound, b=bound)
|
60 |
+
else:
|
61 |
+
raise ValueError("Unsupported layer initialization method")
|
62 |
+
|
63 |
+
|
64 |
+
def init_layer(m: nn.Module,
|
65 |
+
method: str,
|
66 |
+
init_depth: tp.Optional[int] = None,
|
67 |
+
zero_bias_init: bool = False):
|
68 |
+
"""Wrapper around ``get_init_fn`` for proper initialization of LM modules.
|
69 |
+
|
70 |
+
Args:
|
71 |
+
m (nn.Module): Module to initialize.
|
72 |
+
method (str): Method name for the init function.
|
73 |
+
init_depth (int, optional): Optional init depth value used to rescale
|
74 |
+
the standard deviation if defined.
|
75 |
+
zero_bias_init (bool): Whether to initialize the bias to 0 or not.
|
76 |
+
"""
|
77 |
+
if isinstance(m, nn.Linear):
|
78 |
+
init_fn = get_init_fn(method, m.in_features, init_depth=init_depth)
|
79 |
+
if m.weight.device.type == 'cpu' and m.weight.dtype == torch.float16:
|
80 |
+
weight = m.weight.float()
|
81 |
+
init_fn(weight)
|
82 |
+
m.weight.data[:] = weight.half()
|
83 |
+
else:
|
84 |
+
init_fn(m.weight)
|
85 |
+
if zero_bias_init and m.bias is not None:
|
86 |
+
nn.init.constant_(m.bias, 0)
|
87 |
+
elif isinstance(m, nn.Embedding):
|
88 |
+
init_fn = get_init_fn(method, m.embedding_dim, init_depth=None)
|
89 |
+
if m.weight.device.type == 'cpu' and m.weight.dtype == torch.float16:
|
90 |
+
weight = m.weight.float()
|
91 |
+
init_fn(weight)
|
92 |
+
m.weight.data[:] = weight.half()
|
93 |
+
else:
|
94 |
+
init_fn(m.weight)
|
95 |
+
|
96 |
+
|
97 |
+
class ScaledEmbedding(nn.Embedding):
|
98 |
+
"""Boost learning rate for embeddings (with `scale`).
|
99 |
+
"""
|
100 |
+
def __init__(self, *args, lr=None, **kwargs):
|
101 |
+
super().__init__(*args, **kwargs)
|
102 |
+
self.lr = lr
|
103 |
+
|
104 |
+
def make_optim_group(self):
|
105 |
+
group = {"params": list(self.parameters())}
|
106 |
+
if self.lr is not None:
|
107 |
+
group["lr"] = self.lr
|
108 |
+
return group
|
109 |
+
|
110 |
+
|
111 |
+
@dataclass
|
112 |
+
class LMOutput:
|
113 |
+
# The logits are already re-aligned with the input codes
|
114 |
+
# hence no extra shift is required, e.g. when computing CE
|
115 |
+
logits: torch.Tensor # [B, K, T, card]
|
116 |
+
mask: torch.Tensor # [B, K, T]
|
117 |
+
|
118 |
+
|
119 |
+
class LMModel(StreamingModule):
|
120 |
+
"""Transformer-based language model on multiple streams of codes.
|
121 |
+
|
122 |
+
Args:
|
123 |
+
pattern_provider (CodebooksPatternProvider): Pattern provider for codebook interleaving.
|
124 |
+
condition_provider (MusicConditioningProvider): Conditioning provider from metadata.
|
125 |
+
fuser (ConditionFuser): Fuser handling the fusing of conditions with language model input.
|
126 |
+
n_q (int): Number of parallel streams to model.
|
127 |
+
card (int): Cardinality, vocabulary size.
|
128 |
+
dim (int): Dimension of the transformer encoder.
|
129 |
+
num_heads (int): Number of heads for the transformer encoder.
|
130 |
+
hidden_scale (int): Scale for hidden feed forward dimension of the transformer encoder.
|
131 |
+
norm (str): Normalization method.
|
132 |
+
norm_first (bool): Use pre-norm instead of post-norm.
|
133 |
+
emb_lr (float, optional): Embedding-specific learning rate.
|
134 |
+
bias_proj (bool): Use bias for output projections.
|
135 |
+
weight_init (str, optional): Method for weight initialization.
|
136 |
+
depthwise_init (str, optional): Method for depthwise weight initialization.
|
137 |
+
zero_bias_init (bool): If true and bias in Linears, initialize bias to zeros.
|
138 |
+
cfg_dropout (float): Classifier-free guidance dropout.
|
139 |
+
cfg_coef (float): Classifier-free guidance coefficient.
|
140 |
+
attribute_dropout (dict): Attribute dropout probabilities.
|
141 |
+
two_step_cfg (bool): Whether to run classifier free-guidance with 2 distinct steps.
|
142 |
+
**kwargs: Additional parameters for the transformer encoder.
|
143 |
+
"""
|
144 |
+
def __init__(self, pattern_provider: CodebooksPatternProvider, condition_provider: ConditioningProvider,
|
145 |
+
fuser: ConditionFuser, n_q: int = 8, card: int = 1024, dim: int = 128, num_heads: int = 8,
|
146 |
+
hidden_scale: int = 4, norm: str = 'layer_norm', norm_first: bool = False,
|
147 |
+
emb_lr: tp.Optional[float] = None, bias_proj: bool = True,
|
148 |
+
weight_init: tp.Optional[str] = None, depthwise_init: tp.Optional[str] = None,
|
149 |
+
zero_bias_init: bool = False, cfg_dropout: float = 0, cfg_coef: float = 1.0,
|
150 |
+
attribute_dropout: tp.Dict[str, tp.Dict[str, float]] = {}, two_step_cfg: bool = False,
|
151 |
+
**kwargs):
|
152 |
+
super().__init__()
|
153 |
+
self.cfg_coef = cfg_coef
|
154 |
+
self.cfg_dropout = ClassifierFreeGuidanceDropout(p=cfg_dropout)
|
155 |
+
self.att_dropout = AttributeDropout(p=attribute_dropout)
|
156 |
+
self.condition_provider = condition_provider
|
157 |
+
self.fuser = fuser
|
158 |
+
self.card = card
|
159 |
+
embed_dim = self.card + 1
|
160 |
+
self.n_q = n_q
|
161 |
+
self.dim = dim
|
162 |
+
self.pattern_provider = pattern_provider
|
163 |
+
self.two_step_cfg = two_step_cfg
|
164 |
+
self.emb = nn.ModuleList([ScaledEmbedding(embed_dim, dim, lr=emb_lr) for _ in range(n_q)])
|
165 |
+
if 'activation' in kwargs:
|
166 |
+
kwargs['activation'] = get_activation_fn(kwargs['activation'])
|
167 |
+
self.transformer = StreamingTransformer(
|
168 |
+
d_model=dim, num_heads=num_heads, dim_feedforward=int(hidden_scale * dim),
|
169 |
+
norm=norm, norm_first=norm_first, **kwargs)
|
170 |
+
self.out_norm: tp.Optional[nn.Module] = None
|
171 |
+
if norm_first:
|
172 |
+
self.out_norm = create_norm_fn(norm, dim)
|
173 |
+
self.linears = nn.ModuleList([nn.Linear(dim, self.card, bias=bias_proj) for _ in range(n_q)])
|
174 |
+
self._init_weights(weight_init, depthwise_init, zero_bias_init)
|
175 |
+
self._fsdp: tp.Optional[nn.Module]
|
176 |
+
self.__dict__['_fsdp'] = None
|
177 |
+
|
178 |
+
def _init_weights(self, weight_init: tp.Optional[str], depthwise_init: tp.Optional[str], zero_bias_init: bool):
|
179 |
+
"""Initialization of the transformer module weights.
|
180 |
+
|
181 |
+
Args:
|
182 |
+
weight_init (str, optional): Weight initialization strategy. See ``get_init_fn`` for valid options.
|
183 |
+
depthwise_init (str, optional): Depthwise initialization strategy. The following options are valid:
|
184 |
+
'current' where the depth corresponds to the current layer index or 'global' where the total number
|
185 |
+
of layer is used as depth. If not set, no depthwise initialization strategy is used.
|
186 |
+
zero_bias_init (bool): Whether to initialize bias to zero or not.
|
187 |
+
"""
|
188 |
+
assert depthwise_init is None or depthwise_init in ['current', 'global']
|
189 |
+
assert depthwise_init is None or weight_init is not None, \
|
190 |
+
"If 'depthwise_init' is defined, a 'weight_init' method should be provided."
|
191 |
+
assert not zero_bias_init or weight_init is not None, \
|
192 |
+
"If 'zero_bias_init', a 'weight_init' method should be provided"
|
193 |
+
|
194 |
+
if weight_init is None:
|
195 |
+
return
|
196 |
+
|
197 |
+
for emb_layer in self.emb:
|
198 |
+
init_layer(emb_layer, method=weight_init, init_depth=None, zero_bias_init=zero_bias_init)
|
199 |
+
|
200 |
+
for layer_idx, tr_layer in enumerate(self.transformer.layers):
|
201 |
+
depth = None
|
202 |
+
if depthwise_init == 'current':
|
203 |
+
depth = layer_idx + 1
|
204 |
+
elif depthwise_init == 'global':
|
205 |
+
depth = len(self.transformer.layers)
|
206 |
+
init_fn = partial(init_layer, method=weight_init, init_depth=depth, zero_bias_init=zero_bias_init)
|
207 |
+
tr_layer.apply(init_fn)
|
208 |
+
|
209 |
+
for linear in self.linears:
|
210 |
+
init_layer(linear, method=weight_init, init_depth=None, zero_bias_init=zero_bias_init)
|
211 |
+
|
212 |
+
@property
|
213 |
+
def special_token_id(self) -> int:
|
214 |
+
return self.card
|
215 |
+
|
216 |
+
@property
|
217 |
+
def num_codebooks(self) -> int:
|
218 |
+
return self.n_q
|
219 |
+
|
220 |
+
def forward(self, sequence: torch.Tensor,
|
221 |
+
conditions: tp.List[ConditioningAttributes],
|
222 |
+
condition_tensors: tp.Optional[ConditionTensors] = None) -> torch.Tensor:
|
223 |
+
"""Apply language model on sequence and conditions.
|
224 |
+
Given a tensor of sequence of shape [B, K, S] with K the number of codebooks and
|
225 |
+
S the sequence steps, return the logits with shape [B, card, K, S].
|
226 |
+
|
227 |
+
Args:
|
228 |
+
indices (torch.Tensor): Indices of the codes to model.
|
229 |
+
conditions (list of ConditioningAttributes): Conditions to use when modeling
|
230 |
+
the given codes. Note that when evaluating multiple time with the same conditioning
|
231 |
+
you should pre-compute those and pass them as `condition_tensors`.
|
232 |
+
condition_tensors (dict[str, ConditionType], optional): Pre-computed conditioning
|
233 |
+
tensors, see `conditions`.
|
234 |
+
Returns:
|
235 |
+
torch.Tensor: Logits.
|
236 |
+
"""
|
237 |
+
B, K, S = sequence.shape
|
238 |
+
assert K == self.num_codebooks, "Sequence shape must match the specified number of codebooks"
|
239 |
+
input_ = sum([self.emb[k](sequence[:, k]) for k in range(K)])
|
240 |
+
if condition_tensors is None:
|
241 |
+
assert not self._is_streaming, "Conditions tensors should be precomputed when streaming."
|
242 |
+
# apply dropout modules
|
243 |
+
conditions = self.cfg_dropout(conditions)
|
244 |
+
conditions = self.att_dropout(conditions)
|
245 |
+
tokenized = self.condition_provider.tokenize(conditions)
|
246 |
+
# encode conditions and fuse, both have a streaming cache to not recompute when generating.
|
247 |
+
condition_tensors = self.condition_provider(tokenized)
|
248 |
+
else:
|
249 |
+
assert not conditions, "Shouldn't pass both conditions and condition_tensors."
|
250 |
+
|
251 |
+
input_, cross_attention_input = self.fuser(input_, condition_tensors)
|
252 |
+
|
253 |
+
out = self.transformer(input_, cross_attention_src=cross_attention_input)
|
254 |
+
if self.out_norm:
|
255 |
+
out = self.out_norm(out)
|
256 |
+
logits = torch.stack([self.linears[k](out) for k in range(K)], dim=1) # [B, K, S, card]
|
257 |
+
|
258 |
+
# remove the prefix from the model outputs
|
259 |
+
if len(self.fuser.fuse2cond['prepend']) > 0:
|
260 |
+
logits = logits[:, :, -S:]
|
261 |
+
|
262 |
+
return logits # [B, K, S, card]
|
263 |
+
|
264 |
+
def compute_predictions(
|
265 |
+
self, codes: torch.Tensor,
|
266 |
+
conditions: tp.List[ConditioningAttributes],
|
267 |
+
condition_tensors: tp.Optional[ConditionTensors] = None) -> LMOutput:
|
268 |
+
"""Given an input tensor of codes [B, K, T] and list of conditions, runs the model
|
269 |
+
forward using the specified codes interleaving pattern.
|
270 |
+
|
271 |
+
Args:
|
272 |
+
codes (torch.Tensor): Input codes of shape [B, K, T] with B the batch size,
|
273 |
+
K the number of codebooks and T the number of timesteps.
|
274 |
+
conditions (list of ConditioningAttributes): conditionings to use when modeling
|
275 |
+
the given codes. Note that when evaluating multiple time with the same conditioning
|
276 |
+
you should pre-compute those and pass them as `condition_tensors`.
|
277 |
+
condition_tensors (dict[str, ConditionType], optional): pre-computed conditioning
|
278 |
+
tensors, see `conditions`.
|
279 |
+
Returns:
|
280 |
+
LMOutput: Language model outputs
|
281 |
+
logits (torch.Tensor) of shape [B, K, T, card] corresponding to the provided codes,
|
282 |
+
i.e. the first item corresponds to logits to predict the first code, meaning that
|
283 |
+
no additional shifting of codes and logits is required.
|
284 |
+
mask (torch.Tensor) of shape [B, K, T], mask over valid and invalid positions.
|
285 |
+
Given the specified interleaving strategies, parts of the logits and codes should
|
286 |
+
not be considered as valid predictions because of invalid context.
|
287 |
+
"""
|
288 |
+
B, K, T = codes.shape
|
289 |
+
codes = codes.contiguous()
|
290 |
+
# map codes [B, K, T] into pattern sequence [B, K, S] using special_token_id for masked tokens
|
291 |
+
pattern = self.pattern_provider.get_pattern(T)
|
292 |
+
sequence_codes, sequence_indexes, sequence_mask = pattern.build_pattern_sequence(
|
293 |
+
codes, self.special_token_id, keep_only_valid_steps=True
|
294 |
+
)
|
295 |
+
# apply model on pattern sequence
|
296 |
+
model = self if self._fsdp is None else self._fsdp
|
297 |
+
logits = model(sequence_codes, conditions, condition_tensors) # [B, K, S, card]
|
298 |
+
# map back the logits on pattern sequence to logits on original codes: [B, K, S, card] -> [B, K, T, card]
|
299 |
+
# and provide the corresponding mask over invalid positions of tokens
|
300 |
+
logits = logits.permute(0, 3, 1, 2) # [B, card, K, S]
|
301 |
+
# note: we use nans as special token to make it obvious if we feed unexpected logits
|
302 |
+
logits, logits_indexes, logits_mask = pattern.revert_pattern_logits(
|
303 |
+
logits, float('nan'), keep_only_valid_steps=True
|
304 |
+
)
|
305 |
+
logits = logits.permute(0, 2, 3, 1) # [B, K, T, card]
|
306 |
+
logits_mask = logits_mask[None, :, :].expand(B, -1, -1) # [K, T] -> [B, K, T]
|
307 |
+
return LMOutput(logits, logits_mask)
|
308 |
+
|
309 |
+
def _sample_next_token(self,
|
310 |
+
sequence: torch.Tensor,
|
311 |
+
cfg_conditions: CFGConditions,
|
312 |
+
unconditional_state: State,
|
313 |
+
use_sampling: bool = False,
|
314 |
+
temp: float = 1.0,
|
315 |
+
top_k: int = 0,
|
316 |
+
top_p: float = 0.0,
|
317 |
+
cfg_coef: tp.Optional[float] = None) -> torch.Tensor:
|
318 |
+
"""Sample next token from the model given a sequence and a set of conditions. The model supports
|
319 |
+
multiple sampling strategies (greedy sampling, softmax, top-k, top-p...).
|
320 |
+
|
321 |
+
Args:
|
322 |
+
sequence (torch.Tensor): Current sequence of shape [B, K, S]
|
323 |
+
with K corresponding to the number of codebooks and S the number of sequence steps.
|
324 |
+
S = 1 in streaming mode, except for the first step that contains a bigger prompt.
|
325 |
+
condition_tensors (dict[str, ConditionType): Set of conditions. If CFG is used,
|
326 |
+
should be twice the batch size, being the concatenation of the conditions + null conditions.
|
327 |
+
use_sampling (bool): Whether to use a sampling strategy or not.
|
328 |
+
temp (float): Sampling temperature.
|
329 |
+
top_k (int): K for "top-k" sampling.
|
330 |
+
top_p (float): P for "top-p" sampling.
|
331 |
+
cfg_coef (float, optional): classifier free guidance coefficient
|
332 |
+
Returns:
|
333 |
+
next_token (torch.Tensor): Next token tensor of shape [B, K, 1].
|
334 |
+
"""
|
335 |
+
B = sequence.shape[0]
|
336 |
+
cfg_coef = self.cfg_coef if cfg_coef is None else cfg_coef
|
337 |
+
model = self if self._fsdp is None else self._fsdp
|
338 |
+
if self.two_step_cfg and cfg_conditions != {}:
|
339 |
+
assert isinstance(cfg_conditions, tuple), type(cfg_conditions)
|
340 |
+
condition_tensors, null_condition_tensors = cfg_conditions
|
341 |
+
cond_logits = model(sequence, conditions=[], condition_tensors=condition_tensors)
|
342 |
+
state = self.get_streaming_state()
|
343 |
+
self.set_streaming_state(unconditional_state)
|
344 |
+
uncond_logits = model(sequence, conditions=[], condition_tensors=null_condition_tensors)
|
345 |
+
unconditional_state.update(self.get_streaming_state())
|
346 |
+
self.set_streaming_state(state)
|
347 |
+
logits = uncond_logits + (cond_logits - uncond_logits) * self.cfg_coef
|
348 |
+
else:
|
349 |
+
assert isinstance(cfg_conditions, dict)
|
350 |
+
condition_tensors = cfg_conditions
|
351 |
+
if condition_tensors:
|
352 |
+
# Preparing for CFG, predicting both conditional and unconditional logits.
|
353 |
+
sequence = torch.cat([sequence, sequence], dim=0)
|
354 |
+
all_logits = model(
|
355 |
+
sequence,
|
356 |
+
conditions=[], condition_tensors=condition_tensors)
|
357 |
+
if condition_tensors:
|
358 |
+
cond_logits, uncond_logits = all_logits.split(B, dim=0) # [B, K, T, card]
|
359 |
+
logits = uncond_logits + (cond_logits - uncond_logits) * cfg_coef
|
360 |
+
else:
|
361 |
+
logits = all_logits
|
362 |
+
|
363 |
+
logits = logits.permute(0, 1, 3, 2) # [B, K, card, T]
|
364 |
+
logits = logits[..., -1] # [B x K x card]
|
365 |
+
|
366 |
+
# Apply softmax for sampling if temp > 0. Else, do greedy sampling to avoid zero division error.
|
367 |
+
if use_sampling and temp > 0.0:
|
368 |
+
probs = torch.softmax(logits / temp, dim=-1)
|
369 |
+
if top_p > 0.0:
|
370 |
+
next_token = utils.sample_top_p(probs, p=top_p)
|
371 |
+
elif top_k > 0:
|
372 |
+
next_token = utils.sample_top_k(probs, k=top_k)
|
373 |
+
else:
|
374 |
+
next_token = utils.multinomial(probs, num_samples=1)
|
375 |
+
else:
|
376 |
+
next_token = torch.argmax(logits, dim=-1, keepdim=True)
|
377 |
+
|
378 |
+
return next_token
|
379 |
+
|
380 |
+
@torch.no_grad()
|
381 |
+
def generate(self,
|
382 |
+
prompt: tp.Optional[torch.Tensor] = None,
|
383 |
+
conditions: tp.List[ConditioningAttributes] = [],
|
384 |
+
condition_tensors: tp.Optional[ConditionTensors] = None,
|
385 |
+
num_samples: tp.Optional[int] = None,
|
386 |
+
max_gen_len: int = 256,
|
387 |
+
use_sampling: bool = True,
|
388 |
+
temp: float = 1.0,
|
389 |
+
top_k: int = 250,
|
390 |
+
top_p: float = 0.0,
|
391 |
+
cfg_coef: tp.Optional[float] = None,
|
392 |
+
two_step_cfg: tp.Optional[bool] = None,
|
393 |
+
remove_prompts: bool = False,
|
394 |
+
check: bool = False,
|
395 |
+
callback: tp.Optional[tp.Callable[[int, int], None]] = None) -> torch.Tensor:
|
396 |
+
"""Generate tokens sampling from the model given a prompt or unconditionally. Generation can
|
397 |
+
be perform in a greedy fashion or using sampling with top K and top P strategies.
|
398 |
+
|
399 |
+
Args:
|
400 |
+
prompt (torch.Tensor, optional): Prompt tokens of shape [B, K, T].
|
401 |
+
conditions_tensors (list of ConditioningAttributes, optional): List of conditions.
|
402 |
+
num_samples (int, optional): Number of samples to generate when no prompt and no conditions are given.
|
403 |
+
max_gen_len (int): Maximum generation length.
|
404 |
+
use_sampling (bool): Whether to use a sampling strategy or not.
|
405 |
+
temp (float): Sampling temperature.
|
406 |
+
top_k (int): K for "top-k" sampling.
|
407 |
+
top_p (float): P for "top-p" sampling.
|
408 |
+
cfg_coeff (float, optional): Classifier-free guidance coefficient.
|
409 |
+
two_step_cfg (bool, optional): Whether to perform classifier-free guidance with two steps generation.
|
410 |
+
remove_prompts (bool): Whether to remove prompts from generation or not.
|
411 |
+
check (bool): Whether to apply further checks on generated sequence.
|
412 |
+
callback (Callback, optional): Callback function to report generation progress.
|
413 |
+
Returns:
|
414 |
+
torch.Tensor: Generated tokens.
|
415 |
+
"""
|
416 |
+
assert not self.training, "generation shouldn't be used in training mode."
|
417 |
+
first_param = next(iter(self.parameters()))
|
418 |
+
device = first_param.device
|
419 |
+
|
420 |
+
# Checking all input shapes are consistent.
|
421 |
+
possible_num_samples = []
|
422 |
+
if num_samples is not None:
|
423 |
+
possible_num_samples.append(num_samples)
|
424 |
+
elif prompt is not None:
|
425 |
+
possible_num_samples.append(prompt.shape[0])
|
426 |
+
elif conditions:
|
427 |
+
possible_num_samples.append(len(conditions))
|
428 |
+
else:
|
429 |
+
possible_num_samples.append(1)
|
430 |
+
assert [x == possible_num_samples[0] for x in possible_num_samples], "Inconsistent inputs shapes"
|
431 |
+
num_samples = possible_num_samples[0]
|
432 |
+
|
433 |
+
# below we create set of conditions: one conditional and one unconditional
|
434 |
+
# to do that we merge the regular condition together with the null condition
|
435 |
+
# we then do 1 forward pass instead of 2.
|
436 |
+
# the reason for that is two-fold:
|
437 |
+
# 1. it is about x2 faster than doing 2 forward passes
|
438 |
+
# 2. avoid the streaming API treating the 2 passes as part of different time steps
|
439 |
+
# We also support doing two different passes, in particular to ensure that
|
440 |
+
# the padding structure is exactly the same between train and test.
|
441 |
+
# With a batch size of 1, this can be slower though.
|
442 |
+
cfg_conditions: CFGConditions
|
443 |
+
two_step_cfg = self.two_step_cfg if two_step_cfg is None else two_step_cfg
|
444 |
+
if condition_tensors is not None:
|
445 |
+
cfg_conditions = condition_tensors
|
446 |
+
elif conditions:
|
447 |
+
null_conditions = ClassifierFreeGuidanceDropout(p=1.0)(conditions)
|
448 |
+
if two_step_cfg:
|
449 |
+
cfg_conditions = (
|
450 |
+
self.condition_provider(self.condition_provider.tokenize(conditions)),
|
451 |
+
self.condition_provider(self.condition_provider.tokenize(null_conditions)),
|
452 |
+
)
|
453 |
+
else:
|
454 |
+
conditions = conditions + null_conditions
|
455 |
+
tokenized = self.condition_provider.tokenize(conditions)
|
456 |
+
cfg_conditions = self.condition_provider(tokenized)
|
457 |
+
else:
|
458 |
+
cfg_conditions = {}
|
459 |
+
|
460 |
+
if prompt is None:
|
461 |
+
assert num_samples > 0
|
462 |
+
prompt = torch.zeros((num_samples, self.num_codebooks, 0), dtype=torch.long, device=device)
|
463 |
+
|
464 |
+
B, K, T = prompt.shape
|
465 |
+
start_offset = T
|
466 |
+
assert start_offset < max_gen_len
|
467 |
+
|
468 |
+
pattern = self.pattern_provider.get_pattern(max_gen_len)
|
469 |
+
# this token is used as default value for codes that are not generated yet
|
470 |
+
unknown_token = -1
|
471 |
+
|
472 |
+
# we generate codes up to the max_gen_len that will be mapped to the pattern sequence
|
473 |
+
gen_codes = torch.full((B, K, max_gen_len), unknown_token, dtype=torch.long, device=device)
|
474 |
+
# filling the gen_codes with the prompt if needed
|
475 |
+
gen_codes[..., :start_offset] = prompt
|
476 |
+
# create the gen_sequence with proper interleaving from the pattern: [B, K, S]
|
477 |
+
gen_sequence, indexes, mask = pattern.build_pattern_sequence(gen_codes, self.special_token_id)
|
478 |
+
# retrieve the start_offset in the sequence:
|
479 |
+
# it is the first sequence step that contains the `start_offset` timestep
|
480 |
+
start_offset_sequence = pattern.get_first_step_with_timesteps(start_offset)
|
481 |
+
assert start_offset_sequence is not None
|
482 |
+
|
483 |
+
with self.streaming():
|
484 |
+
unconditional_state = self.get_streaming_state()
|
485 |
+
prev_offset = 0
|
486 |
+
gen_sequence_len = gen_sequence.shape[-1] # gen_sequence shape is [B, K, S]
|
487 |
+
for offset in range(start_offset_sequence, gen_sequence_len):
|
488 |
+
# get current sequence (note that the streaming API is providing the caching over previous offsets)
|
489 |
+
curr_sequence = gen_sequence[..., prev_offset:offset]
|
490 |
+
curr_mask = mask[None, ..., prev_offset:offset].expand(B, -1, -1)
|
491 |
+
if check:
|
492 |
+
# check coherence between mask and sequence
|
493 |
+
assert (curr_sequence == torch.where(curr_mask, curr_sequence, self.special_token_id)).all()
|
494 |
+
# should never happen as gen_sequence is filled progressively
|
495 |
+
assert not (curr_sequence == unknown_token).any()
|
496 |
+
# sample next token from the model, next token shape is [B, K, 1]
|
497 |
+
next_token = self._sample_next_token(
|
498 |
+
curr_sequence, cfg_conditions, unconditional_state, use_sampling, temp, top_k, top_p,
|
499 |
+
cfg_coef=cfg_coef)
|
500 |
+
# ensure the tokens that should be masked are properly set to special_token_id
|
501 |
+
# as the model never output special_token_id
|
502 |
+
valid_mask = mask[..., offset:offset+1].expand(B, -1, -1)
|
503 |
+
next_token[~valid_mask] = self.special_token_id
|
504 |
+
# ensure we don't overwrite prompt tokens, we only write over unknown tokens
|
505 |
+
# (then mask tokens should be left as is as well, which is correct)
|
506 |
+
gen_sequence[..., offset:offset+1] = torch.where(
|
507 |
+
gen_sequence[..., offset:offset+1] == unknown_token,
|
508 |
+
next_token, gen_sequence[..., offset:offset+1]
|
509 |
+
)
|
510 |
+
prev_offset = offset
|
511 |
+
if callback is not None:
|
512 |
+
callback(1 + offset - start_offset_sequence, gen_sequence_len - start_offset_sequence)
|
513 |
+
unconditional_state.clear()
|
514 |
+
|
515 |
+
# ensure sequence has been entirely filled
|
516 |
+
assert not (gen_sequence == unknown_token).any()
|
517 |
+
# ensure gen_sequence pattern and mask are matching
|
518 |
+
# which means the gen_sequence is valid according to the pattern
|
519 |
+
assert (
|
520 |
+
gen_sequence == torch.where(mask[None, ...].expand(B, -1, -1), gen_sequence, self.special_token_id)
|
521 |
+
).all()
|
522 |
+
# get back the codes, trimming the prompt if needed and cutting potentially incomplete timesteps
|
523 |
+
out_codes, out_indexes, out_mask = pattern.revert_pattern_sequence(gen_sequence, special_token=unknown_token)
|
524 |
+
|
525 |
+
# sanity checks over the returned codes and corresponding masks
|
526 |
+
assert (out_codes[..., :max_gen_len] != unknown_token).all()
|
527 |
+
assert (out_mask[..., :max_gen_len] == 1).all()
|
528 |
+
|
529 |
+
out_start_offset = start_offset if remove_prompts else 0
|
530 |
+
out_codes = out_codes[..., out_start_offset:max_gen_len]
|
531 |
+
|
532 |
+
# ensure the returned codes are all valid
|
533 |
+
assert (out_codes >= 0).all() and (out_codes <= self.card).all()
|
534 |
+
return out_codes
|
code/code_adaptations_audiocraft/important_note.md
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
### Important information about this ``audiocraft_lm_generate.py`
|
2 |
+
|
3 |
+
As the audiocraft model does not allow to pass precalculated text embeddings into the `generate()` method directly, the
|
4 |
+
code within the audiocraft library was altered. `audiocraft_lm_generate.py` contains an updated version of
|
5 |
+
`audiocraft/audiocraft/models/lm.py`. This is also the reason why audiocraft has to be installed from the local folder
|
6 |
+
`/audiocraft`. This file is just a backup to track the changes applied in the `lm.py`.
|
code/inference/gradio_app/app.py
ADDED
@@ -0,0 +1,78 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import os
|
3 |
+
import sys
|
4 |
+
sys.path.insert(1, '..')
|
5 |
+
import inference
|
6 |
+
import torch
|
7 |
+
|
8 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
9 |
+
|
10 |
+
def generate_background_music(video_path, dataset, use_peft, musicgen_size):
|
11 |
+
print(f"Start generating background music for {video_path} with model \"{'peft' if use_peft else 'audiocraft'}_{dataset}_{musicgen_size}\"")
|
12 |
+
|
13 |
+
new_video_path = inference.generate_background_music(
|
14 |
+
video_path=video_path,
|
15 |
+
dataset=dataset,
|
16 |
+
musicgen_size=musicgen_size,
|
17 |
+
use_stereo=True,
|
18 |
+
use_peft=use_peft,
|
19 |
+
musicgen_temperature=1.0,
|
20 |
+
musicgen_guidance_scale=3.0,
|
21 |
+
top_k_sampling=250,
|
22 |
+
device=device
|
23 |
+
)
|
24 |
+
return gr.Video(new_video_path)
|
25 |
+
|
26 |
+
|
27 |
+
interface = gr.Interface(fn=generate_background_music,
|
28 |
+
inputs=[
|
29 |
+
gr.Video(
|
30 |
+
label="video input",
|
31 |
+
min_length=5,
|
32 |
+
max_length=20,
|
33 |
+
sources=['upload'],
|
34 |
+
show_download_button=True,
|
35 |
+
include_audio=True
|
36 |
+
),
|
37 |
+
gr.Radio(["nature", "symmv"],
|
38 |
+
label="Video Encoder Version",
|
39 |
+
value="nature",
|
40 |
+
info="Choose one of the available Video Encoders."),
|
41 |
+
gr.Radio([False, True],
|
42 |
+
label="Use MusicGen Audio Decoder Model trained with PEFT",
|
43 |
+
value=False,
|
44 |
+
info="If set to 'True' the MusicGen Audio Decoder models trained with LoRA "
|
45 |
+
"(Low Rank Adaptation) are used. If set to 'False', the original "
|
46 |
+
"MusicGen models are used."),
|
47 |
+
gr.Radio(["small", "medium", "large"],
|
48 |
+
label="MusicGen Audio Decoder Size",
|
49 |
+
value="small",
|
50 |
+
info="Choose the size of the MusicGen audio decoder."),
|
51 |
+
],
|
52 |
+
|
53 |
+
outputs=[gr.Video(label="video output")],
|
54 |
+
examples=[
|
55 |
+
[os.path.abspath("../../../videos/originals/n_1.mp4"), "nature", True, "small"],
|
56 |
+
[os.path.abspath("../../../videos/originals/n_2.mp4"), "nature", True, "small"],
|
57 |
+
[os.path.abspath("../../../videos/originals/n_3.mp4"), "nature", True, "small"],
|
58 |
+
[os.path.abspath("../../../videos/originals/n_4.mp4"), "nature", True, "small"],
|
59 |
+
[os.path.abspath("../../../videos/originals/n_5.mp4"), "nature", True, "small"],
|
60 |
+
[os.path.abspath("../../../videos/originals/n_6.mp4"), "nature", True, "small"],
|
61 |
+
[os.path.abspath("../../../videos/originals/n_7.mp4"), "nature", True, "small"],
|
62 |
+
[os.path.abspath("../../../videos/originals/n_8.mp4"), "nature", True, "small"],
|
63 |
+
[os.path.abspath("../../../videos/originals/s_1.mp4"), "nature", True, "small"],
|
64 |
+
[os.path.abspath("../../../videos/originals/s_2.mp4"), "nature", True, "small"],
|
65 |
+
[os.path.abspath("../../../videos/originals/s_3.mp4"), "nature", True, "small"],
|
66 |
+
[os.path.abspath("../../../videos/originals/s_4.mp4"), "nature", True, "small"],
|
67 |
+
[os.path.abspath("../../../videos/originals/s_5.mp4"), "nature", True, "small"],
|
68 |
+
[os.path.abspath("../../../videos/originals/s_6.mp4"), "nature", True, "small"],
|
69 |
+
[os.path.abspath("../../../videos/originals/s_7.mp4"), "nature", True, "small"],
|
70 |
+
[os.path.abspath("../../../videos/originals/s_8.mp4"), "nature", True, "small"],
|
71 |
+
],
|
72 |
+
cache_examples=False
|
73 |
+
)
|
74 |
+
|
75 |
+
if __name__ == "__main__":
|
76 |
+
interface.launch(
|
77 |
+
share=False
|
78 |
+
)
|
code/inference/inference.py
ADDED
@@ -0,0 +1,117 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from omegaconf import OmegaConf
|
2 |
+
from peft import PeftConfig, get_peft_model
|
3 |
+
from audiocraft.models import MusicGen
|
4 |
+
from moviepy.editor import AudioFileClip
|
5 |
+
from code.inference.inference_utils import *
|
6 |
+
import re
|
7 |
+
import time
|
8 |
+
|
9 |
+
re_file_name = re.compile('([^/]+$)')
|
10 |
+
|
11 |
+
|
12 |
+
def generate_background_music(video_path: str,
|
13 |
+
dataset: str,
|
14 |
+
musicgen_size: str,
|
15 |
+
use_stereo: bool,
|
16 |
+
use_peft: bool,
|
17 |
+
device: str,
|
18 |
+
musicgen_temperature: float = 1.0,
|
19 |
+
musicgen_guidance_scale: float = 3.0,
|
20 |
+
top_k_sampling: int = 250) -> str:
|
21 |
+
start = time.time()
|
22 |
+
model_path = "../training/"
|
23 |
+
model_path += "models_peft" if use_peft else "models_audiocraft"
|
24 |
+
model_path += f"/{dataset}" + f"_{musicgen_size}"
|
25 |
+
|
26 |
+
conf = OmegaConf.load(model_path + '/configuration.yml')
|
27 |
+
use_sampling = True if top_k_sampling > 0 else False
|
28 |
+
video = mpe.VideoFileClip(video_path)
|
29 |
+
|
30 |
+
musicgen_model_id = "facebook/musicgen-" + "stereo-" if use_stereo else ""
|
31 |
+
musicgen_model_id += musicgen_size
|
32 |
+
|
33 |
+
result_dir = "./results"
|
34 |
+
os.makedirs(result_dir, exist_ok=True)
|
35 |
+
|
36 |
+
encoder_output_dimension = None
|
37 |
+
if "small" in conf.musicgen_model_id:
|
38 |
+
encoder_output_dimension = 1024
|
39 |
+
elif "medium" in conf.musicgen_model_id:
|
40 |
+
encoder_output_dimension = 1536
|
41 |
+
elif "large" in conf.musicgen_model_id:
|
42 |
+
encoder_output_dimension = 2048
|
43 |
+
assert encoder_output_dimension, f"Video Encoder output dimension could not be determined by {conf.musicgen_model_id}"
|
44 |
+
|
45 |
+
musicgen_model = MusicGen.get_pretrained(musicgen_model_id)
|
46 |
+
musicgen_model.lm.to(device)
|
47 |
+
musicgen_model.compression_model.to(device)
|
48 |
+
if use_peft:
|
49 |
+
peft_path = model_path + "/musicgen_peft_final"
|
50 |
+
peft_config = PeftConfig.from_pretrained(peft_path)
|
51 |
+
musicgen_model.lm = get_peft_model(musicgen_model.lm, peft_config)
|
52 |
+
musicgen_model.lm.load_adapter(peft_path, "default")
|
53 |
+
|
54 |
+
print("MusicGen Model loaded.")
|
55 |
+
|
56 |
+
video_to_t5 = VideoToT5(
|
57 |
+
video_extraction_framerate=conf.video_extraction_framerate,
|
58 |
+
encoder_input_dimension=conf.encoder_input_dimension,
|
59 |
+
encoder_output_dimension=encoder_output_dimension,
|
60 |
+
encoder_heads=conf.encoder_heads,
|
61 |
+
encoder_dim_feedforward=conf.encoder_dim_feedforward,
|
62 |
+
encoder_layers=conf.encoder_layers,
|
63 |
+
device=device
|
64 |
+
)
|
65 |
+
|
66 |
+
video_to_t5.load_state_dict(torch.load(model_path + "/lm_final.pt", map_location=device))
|
67 |
+
print("Video Encoder Model loaded.")
|
68 |
+
|
69 |
+
print("Starting Video Feature Extraction.")
|
70 |
+
video_embedding_t5 = video_to_t5(video_paths=[video_path])
|
71 |
+
|
72 |
+
condition_tensors = create_condition_tensors(
|
73 |
+
video_embeddings=video_embedding_t5,
|
74 |
+
batch_size=1,
|
75 |
+
video_extraction_framerate=video_to_t5.video_extraction_framerate,
|
76 |
+
device=device
|
77 |
+
)
|
78 |
+
|
79 |
+
musicgen_model.generation_params = {
|
80 |
+
'max_gen_len': int(video.duration * musicgen_model.frame_rate),
|
81 |
+
'use_sampling': use_sampling,
|
82 |
+
'temp': musicgen_temperature,
|
83 |
+
'cfg_coef': musicgen_guidance_scale,
|
84 |
+
'two_step_cfg': False,
|
85 |
+
}
|
86 |
+
if use_sampling:
|
87 |
+
musicgen_model.generation_params['top_k'] = 250
|
88 |
+
|
89 |
+
print("Starting Audio Generation.")
|
90 |
+
prompt_tokens = None
|
91 |
+
with torch.no_grad():
|
92 |
+
with musicgen_model.autocast:
|
93 |
+
gen_tokens = musicgen_model.lm.generate(prompt_tokens, [], condition_tensors, callback=None,
|
94 |
+
**musicgen_model.generation_params)
|
95 |
+
gen_audio = musicgen_model.compression_model.decode(gen_tokens)
|
96 |
+
|
97 |
+
end = time.time()
|
98 |
+
print("Elapsed time for generation: " + str(end - start))
|
99 |
+
|
100 |
+
_, video_file_name = os.path.split(video_path)
|
101 |
+
video_file_name = video_file_name[:-4] # remove .mp4
|
102 |
+
|
103 |
+
re_result = re_file_name.search(video_file_name) # get video file name
|
104 |
+
result_path = f"{'peft' if use_peft else 'audiocraft'}_{dataset}_{musicgen_size}_{re_result.group(1)}"
|
105 |
+
audio_result_path = f"{result_dir}/tmp.wav"
|
106 |
+
video_result_path = f"{result_dir}/{result_path}_video.mp4"
|
107 |
+
|
108 |
+
gen_audio = torch.squeeze(gen_audio.detach().cpu()) # remove mini-batch dimension, move to CPU for saving
|
109 |
+
sample_rate = musicgen_model.sample_rate
|
110 |
+
torchaudio.save(audio_result_path, gen_audio, sample_rate)
|
111 |
+
audio_file_clip = AudioFileClip(audio_result_path)
|
112 |
+
video.audio = audio_file_clip
|
113 |
+
|
114 |
+
print("Rendering Video.")
|
115 |
+
video.write_videofile(video_result_path)
|
116 |
+
|
117 |
+
return video_result_path
|
code/inference/inference_utils.py
ADDED
@@ -0,0 +1,283 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from torch.utils.data import Dataset
|
2 |
+
import torch
|
3 |
+
from torch import nn, Tensor
|
4 |
+
import torch.nn.functional as F
|
5 |
+
import torchaudio
|
6 |
+
import os
|
7 |
+
import logging
|
8 |
+
from torchvision.models import resnet50, ResNet50_Weights, resnet152, resnet18, resnet34, ResNet152_Weights
|
9 |
+
from PIL import Image
|
10 |
+
from time import strftime
|
11 |
+
import math
|
12 |
+
import numpy as np
|
13 |
+
import moviepy.editor as mpe
|
14 |
+
|
15 |
+
|
16 |
+
class VideoDataset(Dataset):
|
17 |
+
def __init__(self, data_dir):
|
18 |
+
self.data_dir = data_dir
|
19 |
+
self.data_map = []
|
20 |
+
|
21 |
+
dir_map = os.listdir(data_dir)
|
22 |
+
for d in dir_map:
|
23 |
+
name, extension = os.path.splitext(d)
|
24 |
+
if extension == ".mp4":
|
25 |
+
self.data_map.append({"video": os.path.join(data_dir, d)})
|
26 |
+
|
27 |
+
def __len__(self):
|
28 |
+
return len(self.data_map)
|
29 |
+
|
30 |
+
def __getitem__(self, idx):
|
31 |
+
return self.data_map[idx]["video"]
|
32 |
+
|
33 |
+
|
34 |
+
# input: video_path, output: wav_music
|
35 |
+
class VideoToT5(nn.Module):
|
36 |
+
def __init__(self,
|
37 |
+
device: str,
|
38 |
+
video_extraction_framerate: int,
|
39 |
+
encoder_input_dimension: int,
|
40 |
+
encoder_output_dimension: int,
|
41 |
+
encoder_heads: int,
|
42 |
+
encoder_dim_feedforward: int,
|
43 |
+
encoder_layers: int
|
44 |
+
):
|
45 |
+
super().__init__()
|
46 |
+
self.video_extraction_framerate = video_extraction_framerate
|
47 |
+
self.video_feature_extractor = VideoFeatureExtractor(video_extraction_framerate=video_extraction_framerate,
|
48 |
+
device=device)
|
49 |
+
self.video_encoder = VideoEncoder(
|
50 |
+
device,
|
51 |
+
encoder_input_dimension,
|
52 |
+
encoder_output_dimension,
|
53 |
+
encoder_heads,
|
54 |
+
encoder_dim_feedforward,
|
55 |
+
encoder_layers
|
56 |
+
)
|
57 |
+
|
58 |
+
def forward(self, video_paths: [str]):
|
59 |
+
image_embeddings = []
|
60 |
+
for video_path in video_paths:
|
61 |
+
video = mpe.VideoFileClip(video_path)
|
62 |
+
video_embedding = self.video_feature_extractor(video)
|
63 |
+
image_embeddings.append(video_embedding)
|
64 |
+
video_embedding = torch.stack(
|
65 |
+
image_embeddings) # resulting shape: [batch_size, video_extraction_framerate, resnet_output_dimension]
|
66 |
+
# not used, gives worse results!
|
67 |
+
# video_embeddings = torch.mean(video_embeddings, 0, True) # average out all image embedding to one video embedding
|
68 |
+
|
69 |
+
t5_embeddings = self.video_encoder(video_embedding) # T5 output: [batch_size, num_tokens,
|
70 |
+
# t5_embedding_size]
|
71 |
+
return t5_embeddings
|
72 |
+
|
73 |
+
|
74 |
+
class VideoEncoder(nn.Module):
|
75 |
+
def __init__(self,
|
76 |
+
device: str,
|
77 |
+
encoder_input_dimension: int,
|
78 |
+
encoder_output_dimension: int,
|
79 |
+
encoder_heads: int,
|
80 |
+
encoder_dim_feedforward: int,
|
81 |
+
encoder_layers: int
|
82 |
+
):
|
83 |
+
super().__init__()
|
84 |
+
self.device = device
|
85 |
+
self.encoder = (nn.TransformerEncoder(
|
86 |
+
nn.TransformerEncoderLayer(
|
87 |
+
d_model=encoder_input_dimension,
|
88 |
+
nhead=encoder_heads,
|
89 |
+
dim_feedforward=encoder_dim_feedforward
|
90 |
+
),
|
91 |
+
num_layers=encoder_layers,
|
92 |
+
)
|
93 |
+
).to(device)
|
94 |
+
|
95 |
+
# linear layer to match T5 embedding dimension
|
96 |
+
self.linear = (nn.Linear(
|
97 |
+
in_features=encoder_input_dimension,
|
98 |
+
out_features=encoder_output_dimension)
|
99 |
+
.to(device))
|
100 |
+
|
101 |
+
def forward(self, x):
|
102 |
+
assert x.dim() == 3
|
103 |
+
x = torch.transpose(x, 0, 1) # encoder expects [sequence_length, batch_size, embedding_dimension]
|
104 |
+
x = self.encoder(x) # encoder forward pass
|
105 |
+
x = self.linear(x) # forward pass through the linear layer
|
106 |
+
x = torch.transpose(x, 0, 1) # shape: [batch_size, sequence_length, embedding_dimension]
|
107 |
+
return x
|
108 |
+
|
109 |
+
|
110 |
+
class VideoFeatureExtractor(nn.Module):
|
111 |
+
def __init__(self,
|
112 |
+
device: str,
|
113 |
+
video_extraction_framerate: int = 1,
|
114 |
+
resnet_output_dimension: int = 2048):
|
115 |
+
super().__init__()
|
116 |
+
self.device = device
|
117 |
+
|
118 |
+
# using a ResNet trained on ImageNet
|
119 |
+
self.resnet = resnet50(weights="IMAGENET1K_V2").eval()
|
120 |
+
self.resnet = torch.nn.Sequential(*(list(self.resnet.children())[:-1])).to(device) # remove ResNet layer
|
121 |
+
self.resnet_preprocessor = ResNet50_Weights.DEFAULT.transforms().to(device)
|
122 |
+
self.video_extraction_framerate = video_extraction_framerate # setting the fps at which the video is processed
|
123 |
+
self.positional_encoder = PositionalEncoding(resnet_output_dimension).to(device)
|
124 |
+
|
125 |
+
def forward(self, video: mpe.VideoFileClip):
|
126 |
+
embeddings = []
|
127 |
+
for i in range(0, 30 * self.video_extraction_framerate):
|
128 |
+
i = video.get_frame(i) # get frame as numpy array
|
129 |
+
i = Image.fromarray(i) # create PIL image from numpy array
|
130 |
+
i = self.resnet_preprocessor(i) # preprocess image
|
131 |
+
i = i.to(self.device)
|
132 |
+
i = i.unsqueeze(0) # adding a batch dimension
|
133 |
+
i = self.resnet(i).squeeze() # ResNet forward pass
|
134 |
+
i = i.squeeze()
|
135 |
+
embeddings.append(i) # collect embeddings
|
136 |
+
|
137 |
+
embeddings = torch.stack(embeddings) # concatenate all frame embeddings into one video embedding
|
138 |
+
embeddings = embeddings.unsqueeze(1)
|
139 |
+
embeddings = self.positional_encoder(embeddings) # apply positional encoding with a sequence length of 30
|
140 |
+
embeddings = embeddings.squeeze()
|
141 |
+
return embeddings
|
142 |
+
|
143 |
+
|
144 |
+
# from https://pytorch.org/tutorials/beginner/transformer_tutorial.html
|
145 |
+
class PositionalEncoding(nn.Module):
|
146 |
+
def __init__(self, d_model: int, dropout: float = 0.1, max_length: int = 5000):
|
147 |
+
super().__init__()
|
148 |
+
self.dropout = nn.Dropout(p=dropout)
|
149 |
+
position = torch.arange(30).unsqueeze(1)
|
150 |
+
div_term = torch.exp(torch.arange(0, d_model, 2) * (-math.log(10000.0) / d_model))
|
151 |
+
pe = torch.zeros(30, 1, d_model)
|
152 |
+
pe[:, 0, 0::2] = torch.sin(position * div_term)
|
153 |
+
pe[:, 0, 1::2] = torch.cos(position * div_term)
|
154 |
+
self.register_buffer('pe', pe)
|
155 |
+
|
156 |
+
def forward(self, x: Tensor) -> Tensor:
|
157 |
+
x = x + self.pe[:x.size(0)]
|
158 |
+
return self.dropout(x)
|
159 |
+
|
160 |
+
|
161 |
+
def freeze_model(model: nn.Module):
|
162 |
+
for param in model.parameters():
|
163 |
+
param.requires_grad = False
|
164 |
+
model.eval()
|
165 |
+
|
166 |
+
|
167 |
+
def split_dataset_randomly(dataset, validation_split: float, test_split: float, seed: int = None):
|
168 |
+
dataset_size = len(dataset)
|
169 |
+
indices = list(range(dataset_size))
|
170 |
+
datapoints_validation = int(np.floor(validation_split * dataset_size))
|
171 |
+
datapoints_testing = int(np.floor(test_split * dataset_size))
|
172 |
+
|
173 |
+
if seed:
|
174 |
+
np.random.seed(seed)
|
175 |
+
|
176 |
+
np.random.shuffle(indices) # in-place operation
|
177 |
+
training = indices[datapoints_validation + datapoints_testing:]
|
178 |
+
validation = indices[datapoints_validation:datapoints_testing + datapoints_validation]
|
179 |
+
testing = indices[:datapoints_testing]
|
180 |
+
|
181 |
+
assert len(validation) == datapoints_validation, "Validation set length incorrect"
|
182 |
+
assert len(testing) == datapoints_testing, "Testing set length incorrect"
|
183 |
+
assert len(training) == dataset_size - (datapoints_testing + datapoints_testing), "Training set length incorrect"
|
184 |
+
assert not any([item in training for item in validation]), "Training and Validation overlap"
|
185 |
+
assert not any([item in training for item in testing]), "Training and Testing overlap"
|
186 |
+
assert not any([item in validation for item in testing]), "Validation and Testing overlap"
|
187 |
+
|
188 |
+
return training, validation, testing
|
189 |
+
|
190 |
+
|
191 |
+
### private function from audiocraft.solver.musicgen.py => _compute_cross_entropy
|
192 |
+
def compute_cross_entropy(logits: torch.Tensor, targets: torch.Tensor, mask: torch.Tensor):
|
193 |
+
"""Compute cross entropy between multi-codebook targets and model's logits.
|
194 |
+
The cross entropy is computed per codebook to provide codebook-level cross entropy.
|
195 |
+
Valid timesteps for each of the codebook are pulled from the mask, where invalid
|
196 |
+
timesteps are set to 0.
|
197 |
+
|
198 |
+
Args:
|
199 |
+
logits (torch.Tensor): Model's logits of shape [B, K, T, card].
|
200 |
+
targets (torch.Tensor): Target codes, of shape [B, K, T].
|
201 |
+
mask (torch.Tensor): Mask for valid target codes, of shape [B, K, T].
|
202 |
+
Returns:
|
203 |
+
ce (torch.Tensor): Cross entropy averaged over the codebooks
|
204 |
+
ce_per_codebook (list of torch.Tensor): Cross entropy per codebook (detached).
|
205 |
+
"""
|
206 |
+
B, K, T = targets.shape
|
207 |
+
assert logits.shape[:-1] == targets.shape
|
208 |
+
assert mask.shape == targets.shape
|
209 |
+
ce = torch.zeros([], device=targets.device)
|
210 |
+
ce_per_codebook = []
|
211 |
+
for k in range(K):
|
212 |
+
logits_k = logits[:, k, ...].contiguous().view(-1, logits.size(-1)) # [B x T, card]
|
213 |
+
targets_k = targets[:, k, ...].contiguous().view(-1) # [B x T]
|
214 |
+
mask_k = mask[:, k, ...].contiguous().view(-1) # [B x T]
|
215 |
+
ce_targets = targets_k[mask_k]
|
216 |
+
ce_logits = logits_k[mask_k]
|
217 |
+
q_ce = F.cross_entropy(ce_logits, ce_targets)
|
218 |
+
ce += q_ce
|
219 |
+
ce_per_codebook.append(q_ce.detach())
|
220 |
+
# average cross entropy across codebooks
|
221 |
+
ce = ce / K
|
222 |
+
return ce, ce_per_codebook
|
223 |
+
|
224 |
+
|
225 |
+
def generate_audio_codes(audio_paths: [str],
|
226 |
+
audiocraft_compression_model: torch.nn.Module,
|
227 |
+
device: str) -> torch.Tensor:
|
228 |
+
audio_duration = 30
|
229 |
+
encodec_sample_rate = audiocraft_compression_model.sample_rate
|
230 |
+
|
231 |
+
torch_audios = []
|
232 |
+
for audio_path in audio_paths:
|
233 |
+
wav, original_sample_rate = torchaudio.load(audio_path) # load audio from file
|
234 |
+
wav = torchaudio.functional.resample(wav, original_sample_rate,
|
235 |
+
encodec_sample_rate) # cast audio to model sample rate
|
236 |
+
wav = wav[:, :encodec_sample_rate * audio_duration] # enforce an exact audio length of 30 seconds
|
237 |
+
|
238 |
+
assert len(wav.shape) == 2, f"audio data is not of shape [channels, duration]"
|
239 |
+
assert wav.shape[0] == 2, "audio data should be in stereo, but has not 2 channels"
|
240 |
+
|
241 |
+
torch_audios.append(wav)
|
242 |
+
|
243 |
+
torch_audios = torch.stack(torch_audios)
|
244 |
+
torch_audios = torch_audios.to(device)
|
245 |
+
|
246 |
+
with torch.no_grad():
|
247 |
+
gen_audio = audiocraft_compression_model.encode(torch_audios)
|
248 |
+
|
249 |
+
codes, scale = gen_audio
|
250 |
+
assert scale is None
|
251 |
+
|
252 |
+
return codes
|
253 |
+
|
254 |
+
|
255 |
+
def create_condition_tensors(
|
256 |
+
video_embeddings: torch.Tensor,
|
257 |
+
batch_size: int,
|
258 |
+
video_extraction_framerate: int,
|
259 |
+
device: str
|
260 |
+
):
|
261 |
+
# model T5 mask
|
262 |
+
mask = torch.ones((batch_size, video_extraction_framerate * 30), dtype=torch.int).to(device)
|
263 |
+
|
264 |
+
condition_tensors = {
|
265 |
+
'description': (video_embeddings, mask)
|
266 |
+
}
|
267 |
+
return condition_tensors
|
268 |
+
|
269 |
+
|
270 |
+
def get_current_timestamp():
|
271 |
+
return strftime("%Y_%m_%d___%H_%M_%S")
|
272 |
+
|
273 |
+
|
274 |
+
def configure_logging(output_dir: str, filename: str, log_level):
|
275 |
+
# create logs folder, if not existing
|
276 |
+
os.makedirs(output_dir, exist_ok=True)
|
277 |
+
level = getattr(logging, log_level)
|
278 |
+
file_path = output_dir + "/" + filename
|
279 |
+
logging.basicConfig(filename=file_path, encoding='utf-8', level=level)
|
280 |
+
logger = logging.getLogger()
|
281 |
+
# only add a StreamHandler if it is not present yet
|
282 |
+
if len(logger.handlers) <= 1:
|
283 |
+
logger.addHandler(logging.StreamHandler())
|
code/training/__init__.py
ADDED
File without changes
|
code/training/training.py
ADDED
@@ -0,0 +1,239 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from audiocraft.models import MusicGen
|
2 |
+
from torch.optim import AdamW
|
3 |
+
from torch.utils.data import DataLoader
|
4 |
+
import wandb
|
5 |
+
from omegaconf import OmegaConf
|
6 |
+
from training_utils import *
|
7 |
+
import json
|
8 |
+
import os
|
9 |
+
import sys
|
10 |
+
import shutil
|
11 |
+
import copy
|
12 |
+
from peft import get_peft_model, LoraConfig
|
13 |
+
|
14 |
+
|
15 |
+
def get_trainable_parameters(model):
|
16 |
+
"""
|
17 |
+
Prints the number of trainable parameters in the model.
|
18 |
+
"""
|
19 |
+
trainable_params = 0
|
20 |
+
all_param = 0
|
21 |
+
for _, param in model.named_parameters():
|
22 |
+
all_param += param.numel()
|
23 |
+
if param.requires_grad:
|
24 |
+
trainable_params += param.numel()
|
25 |
+
return f"trainable params: {trainable_params} || all params: {all_param} || trainable%: {100 * trainable_params / all_param}"
|
26 |
+
|
27 |
+
|
28 |
+
def save_model(step: int, is_final_save: bool):
|
29 |
+
logging.info(f"Model save at step {int(step)}")
|
30 |
+
torch.save(video_to_t5.state_dict(),
|
31 |
+
f"{model_save_path}/lm_{'final' if is_final_save else int(step)}.pt")
|
32 |
+
|
33 |
+
if conf.use_peft:
|
34 |
+
musicgen_model.lm.save_pretrained(f"{model_save_path}/musicgen_peft_{'final' if is_final_save else int(step)}")
|
35 |
+
|
36 |
+
|
37 |
+
conf = OmegaConf.load('training_conf.yml')
|
38 |
+
start_timestamp = get_current_timestamp()
|
39 |
+
model_save_path = f"./{'models_peft' if conf.use_peft else 'models_audiocraft'}/{conf.output_dir_name}"
|
40 |
+
|
41 |
+
if os.path.isdir(model_save_path):
|
42 |
+
i = input(f"Model output directory {model_save_path} already exists, overwrite directory? confirm with [y]\n")
|
43 |
+
if i == "y" or i == "yes":
|
44 |
+
shutil.rmtree(model_save_path)
|
45 |
+
else:
|
46 |
+
print("Aborting.")
|
47 |
+
sys.exit()
|
48 |
+
|
49 |
+
configure_logging(model_save_path, f"{start_timestamp}.log", conf.log_level)
|
50 |
+
os.makedirs(model_save_path, exist_ok=True)
|
51 |
+
|
52 |
+
if conf.use_wandb:
|
53 |
+
wandb = wandb.init(project=conf.wandb_project_name,
|
54 |
+
config=OmegaConf.to_container(conf))
|
55 |
+
logging.info(f"Wandb project_name: {conf.wandb_project_name}, run_id: {wandb.id}, run_name: {wandb.id}")
|
56 |
+
|
57 |
+
logging.info("Start Training")
|
58 |
+
musicgen_model = MusicGen.get_pretrained(conf.musicgen_model_id, device=conf.device)
|
59 |
+
musicgen_model.compression_model = musicgen_model.compression_model.to(conf.device)
|
60 |
+
musicgen_model.lm = musicgen_model.lm.to(conf.device)
|
61 |
+
musicgen_model.lm = musicgen_model.lm.train()
|
62 |
+
|
63 |
+
encoder_output_dimension = None
|
64 |
+
if "small" in conf.musicgen_model_id:
|
65 |
+
encoder_output_dimension = 1024
|
66 |
+
elif "medium" in conf.musicgen_model_id:
|
67 |
+
encoder_output_dimension = 1536
|
68 |
+
elif "large" in conf.musicgen_model_id:
|
69 |
+
encoder_output_dimension = 2048
|
70 |
+
assert encoder_output_dimension, f"Video Encoder output dimension could not be determined by {conf.musicgen_model_id}"
|
71 |
+
|
72 |
+
# initialize video-to-text model
|
73 |
+
video_to_t5 = VideoToT5(video_extraction_framerate=conf.video_extraction_framerate,
|
74 |
+
encoder_input_dimension=conf.encoder_input_dimension,
|
75 |
+
encoder_output_dimension=encoder_output_dimension,
|
76 |
+
encoder_heads=conf.encoder_heads,
|
77 |
+
encoder_dim_feedforward=conf.encoder_dim_feedforward,
|
78 |
+
encoder_layers=conf.encoder_layers,
|
79 |
+
device=conf.device)
|
80 |
+
|
81 |
+
# freeze all model layers that except the video-to-text encoder
|
82 |
+
freeze_model(video_to_t5.video_feature_extractor)
|
83 |
+
freeze_model(musicgen_model.compression_model)
|
84 |
+
if not conf.use_peft:
|
85 |
+
freeze_model(musicgen_model.lm)
|
86 |
+
|
87 |
+
logging.info(f"Trainable parameters video_to_t5: {get_trainable_parameters(video_to_t5)}")
|
88 |
+
|
89 |
+
if conf.use_peft:
|
90 |
+
lora_config = LoraConfig(
|
91 |
+
r=conf.lora_r,
|
92 |
+
lora_alpha=conf.lora_alpha,
|
93 |
+
target_modules=["out_proj", "linear1", "linear2"],
|
94 |
+
lora_dropout=conf.lora_dropout,
|
95 |
+
bias="none",
|
96 |
+
modules_to_save=["classifier"]
|
97 |
+
)
|
98 |
+
|
99 |
+
logging.info(f"Trainable parameters MusicGen before LoRA: {get_trainable_parameters(musicgen_model.lm)}")
|
100 |
+
musicgen_model.lm = get_peft_model(musicgen_model.lm, lora_config)
|
101 |
+
logging.info(f"Trainable parameters MusicGen with LoRA: {get_trainable_parameters(musicgen_model.lm)}")
|
102 |
+
|
103 |
+
logging.info(f"Training on {conf.musicgen_model_id}")
|
104 |
+
|
105 |
+
# create dataset train and validation split
|
106 |
+
dataset = VideoDataset(conf.dataset_video_folder)
|
107 |
+
train_indices, validation_indices, test_indices = split_dataset_randomly(dataset,
|
108 |
+
conf.dataset_validation_split,
|
109 |
+
conf.dataset_test_split,
|
110 |
+
seed=conf.dataset_shuffling_seed)
|
111 |
+
|
112 |
+
train_dataset = copy.copy(dataset)
|
113 |
+
train_dataset.data_map = [dataset.data_map[i] for i in train_indices]
|
114 |
+
validation_dataset = copy.copy(dataset)
|
115 |
+
validation_dataset.data_map = [dataset.data_map[i] for i in validation_indices]
|
116 |
+
test_dataset = copy.copy(dataset)
|
117 |
+
test_dataset.data_map = [dataset.data_map[i] for i in test_indices]
|
118 |
+
train_dataloader = DataLoader(train_dataset, batch_size=conf.batch_size)
|
119 |
+
validation_dataloader = DataLoader(validation_dataset, batch_size=conf.batch_size)
|
120 |
+
test_dataloader = DataLoader(test_dataset, batch_size=1)
|
121 |
+
|
122 |
+
with open(f"{model_save_path}/dataset_split.json", 'w') as f:
|
123 |
+
json.dump({
|
124 |
+
"dataset": dataset.data_map,
|
125 |
+
"training": train_dataloader.dataset.data_map,
|
126 |
+
"validation": validation_dataloader.dataset.data_map,
|
127 |
+
}, f)
|
128 |
+
|
129 |
+
with open(f"{model_save_path}/configuration.yml", 'w') as f:
|
130 |
+
OmegaConf.save(conf, f)
|
131 |
+
|
132 |
+
logging.info(f"Video path: {conf.dataset_video_folder}, "
|
133 |
+
f"Audio path: {conf.dataset_audio_folder} with {len(dataset)} examples, "
|
134 |
+
f"Batch Size: {conf.batch_size}.")
|
135 |
+
|
136 |
+
optimizer = AdamW(
|
137 |
+
video_to_t5.video_encoder.parameters(),
|
138 |
+
betas=(conf.beta1, conf.beta2),
|
139 |
+
weight_decay=conf.weight_decay,
|
140 |
+
lr=conf.learning_rate
|
141 |
+
)
|
142 |
+
|
143 |
+
|
144 |
+
def forward_pass(video_path_list: [str]):
|
145 |
+
optimizer.zero_grad()
|
146 |
+
|
147 |
+
# get corresponding audio for the video data
|
148 |
+
audio_paths = []
|
149 |
+
for video_path in video_paths:
|
150 |
+
# load corresponding audio file
|
151 |
+
_, video_file_name = os.path.split(video_path)
|
152 |
+
video_file_name = video_file_name[:-4] # remove .mp4
|
153 |
+
if conf.use_demucs_folder_structure:
|
154 |
+
audio_path = f"{conf.dataset_audio_folder}/htdemucs/{video_file_name}/no_vocals.wav"
|
155 |
+
else:
|
156 |
+
audio_path = f"{conf.dataset_audio_folder}/{video_file_name}.wav"
|
157 |
+
audio_paths.append(audio_path)
|
158 |
+
|
159 |
+
# batch encode audio data
|
160 |
+
audio_batches = generate_audio_codes(audio_paths=audio_paths,
|
161 |
+
audiocraft_compression_model=musicgen_model.compression_model,
|
162 |
+
device=conf.device)
|
163 |
+
|
164 |
+
# batch encode video data
|
165 |
+
video_embedding_batches = video_to_t5(video_path_list)
|
166 |
+
|
167 |
+
condition_tensors = create_condition_tensors(video_embedding_batches,
|
168 |
+
conf.batch_size,
|
169 |
+
video_to_t5.video_extraction_framerate,
|
170 |
+
device=conf.device)
|
171 |
+
|
172 |
+
# forward pass with MusicGen
|
173 |
+
with musicgen_model.autocast:
|
174 |
+
musicgen_output = musicgen_model.lm.compute_predictions(
|
175 |
+
codes=audio_batches,
|
176 |
+
conditions=[],
|
177 |
+
condition_tensors=condition_tensors
|
178 |
+
)
|
179 |
+
loss, _ = compute_cross_entropy(logits=musicgen_output.logits,
|
180 |
+
targets=audio_batches,
|
181 |
+
mask=musicgen_output.mask)
|
182 |
+
return musicgen_output, loss
|
183 |
+
|
184 |
+
|
185 |
+
training_step = 0
|
186 |
+
for epoch in range(conf.num_epochs):
|
187 |
+
epoch_training_loss = []
|
188 |
+
epoch_validation_loss = []
|
189 |
+
logging.info("Starting next Epoch.")
|
190 |
+
for batch_idx, video_paths in enumerate(train_dataloader):
|
191 |
+
_, training_loss = forward_pass(video_paths)
|
192 |
+
epoch_training_loss.append(training_loss)
|
193 |
+
|
194 |
+
training_loss.backward()
|
195 |
+
# gradient clipping
|
196 |
+
torch.nn.utils.clip_grad_norm_(musicgen_model.lm.parameters(), conf.gradient_clipping)
|
197 |
+
optimizer.step()
|
198 |
+
training_step += 1
|
199 |
+
|
200 |
+
# update metrics
|
201 |
+
if conf.use_wandb:
|
202 |
+
wandb.log(dict(training_loss=training_loss.item()))
|
203 |
+
logging.info(
|
204 |
+
f"Epoch: {epoch + 1}/{conf.num_epochs}, "
|
205 |
+
f"Batch: {batch_idx}/{len(train_dataloader)}, "
|
206 |
+
f"Loss: {training_loss.item()}"
|
207 |
+
)
|
208 |
+
|
209 |
+
# save model after each epoch
|
210 |
+
save_model(training_step, False)
|
211 |
+
|
212 |
+
# testing
|
213 |
+
logging.info("Start Validation.")
|
214 |
+
with torch.no_grad():
|
215 |
+
for batch_idx, video_paths in enumerate(validation_dataloader):
|
216 |
+
_, validation_loss = forward_pass(video_paths)
|
217 |
+
epoch_validation_loss.append(validation_loss)
|
218 |
+
if conf.use_wandb:
|
219 |
+
wandb.log(dict(validation_loss=validation_loss.item()))
|
220 |
+
logging.info(
|
221 |
+
f"Epoch: {epoch + 1}/{conf.num_epochs}, "
|
222 |
+
f"Batch: {batch_idx}/{len(validation_dataloader)}, "
|
223 |
+
f"Loss: {validation_loss.item()}"
|
224 |
+
)
|
225 |
+
logging.info(
|
226 |
+
f"Epoch results: epoch_training_loss {epoch_training_loss}, epoch_validation_loss {epoch_validation_loss}")
|
227 |
+
save_model(training_step, True)
|
228 |
+
logging.info(f"Finished Training. Start Testing")
|
229 |
+
with torch.no_grad():
|
230 |
+
for batch_idx, video_paths in enumerate(test_dataloader):
|
231 |
+
_, testing_loss = forward_pass(video_paths)
|
232 |
+
if conf.use_wandb:
|
233 |
+
wandb.log(dict(testing_loss=testing_loss.item()))
|
234 |
+
logging.info(
|
235 |
+
f"Epoch: {epoch + 1}/{conf.num_epochs}, "
|
236 |
+
f"Batch: {batch_idx}/{len(test_dataloader)}, "
|
237 |
+
f"Loss: {testing_loss.item()}"
|
238 |
+
)
|
239 |
+
logging.info(f"Finished Testing.")
|
code/training/training_conf.yml
ADDED
@@ -0,0 +1,47 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# LOGGING
|
2 |
+
log_level: "INFO"
|
3 |
+
|
4 |
+
# TRAINING LOOP
|
5 |
+
num_epochs: 4
|
6 |
+
batch_size: 2
|
7 |
+
save_step: 800
|
8 |
+
device: "cuda"
|
9 |
+
|
10 |
+
# WANDB
|
11 |
+
use_wandb: true
|
12 |
+
wandb_project_name: "pe_30"
|
13 |
+
|
14 |
+
# OPTIMIZER
|
15 |
+
gradient_clipping: 1.0
|
16 |
+
beta1: 0.9 # from audiocraft
|
17 |
+
beta2: 0.95 # from audiocraft
|
18 |
+
weight_decay: 0.1 # from audiocraft
|
19 |
+
learning_rate: 1e-5
|
20 |
+
|
21 |
+
# VIDEO ENCODER
|
22 |
+
video_extraction_framerate: 1
|
23 |
+
encoder_input_dimension: 2048 # determined by ResNet
|
24 |
+
encoder_dim_feedforward: 8192
|
25 |
+
encoder_heads: 16
|
26 |
+
encoder_layers: 6
|
27 |
+
|
28 |
+
# MUSICGEN
|
29 |
+
musicgen_model_id: "facebook/musicgen-stereo-small"
|
30 |
+
|
31 |
+
# PEFT PARAMETERS
|
32 |
+
use_peft: false
|
33 |
+
lora_r: 16
|
34 |
+
lora_alpha: 16
|
35 |
+
lora_dropout: 0.1
|
36 |
+
|
37 |
+
# OUTPUT FOLDER
|
38 |
+
output_dir_name: "nature_small"
|
39 |
+
|
40 |
+
# DATASET
|
41 |
+
dataset_video_folder: "../../datasets/nature/videos_30sec"
|
42 |
+
dataset_audio_folder: "../../datasets/nature/audio_30sec"
|
43 |
+
#dataset_audio_folder: "../../datasets/symmv/audio_30sec_separated"
|
44 |
+
use_demucs_folder_structure: false
|
45 |
+
dataset_validation_split: 0.1
|
46 |
+
dataset_test_split: 0.1
|
47 |
+
dataset_shuffling_seed: 42
|
code/training/training_utils.py
ADDED
@@ -0,0 +1,282 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from torch.utils.data import Dataset
|
2 |
+
import torch
|
3 |
+
from torch import nn, Tensor
|
4 |
+
import torch.nn.functional as F
|
5 |
+
import torchaudio
|
6 |
+
import os
|
7 |
+
import logging
|
8 |
+
from torchvision.models import resnet50, ResNet50_Weights, resnet152, resnet18, resnet34, ResNet152_Weights
|
9 |
+
from PIL import Image
|
10 |
+
from time import strftime
|
11 |
+
import math
|
12 |
+
import numpy as np
|
13 |
+
import moviepy.editor as mpe
|
14 |
+
|
15 |
+
|
16 |
+
class VideoDataset(Dataset):
|
17 |
+
def __init__(self, data_dir):
|
18 |
+
self.data_dir = data_dir
|
19 |
+
self.data_map = []
|
20 |
+
|
21 |
+
dir_map = os.listdir(data_dir)
|
22 |
+
for d in dir_map:
|
23 |
+
name, extension = os.path.splitext(d)
|
24 |
+
if extension == ".mp4":
|
25 |
+
self.data_map.append({"video": os.path.join(data_dir, d)})
|
26 |
+
|
27 |
+
def __len__(self):
|
28 |
+
return len(self.data_map)
|
29 |
+
|
30 |
+
def __getitem__(self, idx):
|
31 |
+
return self.data_map[idx]["video"]
|
32 |
+
|
33 |
+
|
34 |
+
# input: video_path, output: wav_music
|
35 |
+
class VideoToT5(nn.Module):
|
36 |
+
def __init__(self,
|
37 |
+
device: str,
|
38 |
+
video_extraction_framerate: int,
|
39 |
+
encoder_input_dimension: int,
|
40 |
+
encoder_output_dimension: int,
|
41 |
+
encoder_heads: int,
|
42 |
+
encoder_dim_feedforward: int,
|
43 |
+
encoder_layers: int
|
44 |
+
):
|
45 |
+
super().__init__()
|
46 |
+
self.video_extraction_framerate = video_extraction_framerate
|
47 |
+
self.video_feature_extractor = VideoFeatureExtractor(video_extraction_framerate=video_extraction_framerate,
|
48 |
+
device=device)
|
49 |
+
self.video_encoder = VideoEncoder(
|
50 |
+
device,
|
51 |
+
encoder_input_dimension,
|
52 |
+
encoder_output_dimension,
|
53 |
+
encoder_heads,
|
54 |
+
encoder_dim_feedforward,
|
55 |
+
encoder_layers
|
56 |
+
)
|
57 |
+
|
58 |
+
def forward(self, video_paths: [str]):
|
59 |
+
image_embeddings = []
|
60 |
+
for video_path in video_paths:
|
61 |
+
video = mpe.VideoFileClip(video_path)
|
62 |
+
video_embedding = self.video_feature_extractor(video)
|
63 |
+
image_embeddings.append(video_embedding)
|
64 |
+
video_embedding = torch.stack(
|
65 |
+
image_embeddings) # resulting shape: [batch_size, video_extraction_framerate, resnet_output_dimension]
|
66 |
+
# not used, gives worse results!
|
67 |
+
# video_embeddings = torch.mean(video_embeddings, 0, True) # average out all image embedding to one video embedding
|
68 |
+
|
69 |
+
t5_embeddings = self.video_encoder(video_embedding) # T5 output: [batch_size, num_tokens,
|
70 |
+
# t5_embedding_size]
|
71 |
+
return t5_embeddings
|
72 |
+
|
73 |
+
|
74 |
+
class VideoEncoder(nn.Module):
|
75 |
+
def __init__(self,
|
76 |
+
device: str,
|
77 |
+
encoder_input_dimension: int,
|
78 |
+
encoder_output_dimension: int,
|
79 |
+
encoder_heads: int,
|
80 |
+
encoder_dim_feedforward: int,
|
81 |
+
encoder_layers: int
|
82 |
+
):
|
83 |
+
super().__init__()
|
84 |
+
self.device = device
|
85 |
+
self.encoder = (nn.TransformerEncoder(
|
86 |
+
nn.TransformerEncoderLayer(
|
87 |
+
d_model=encoder_input_dimension,
|
88 |
+
nhead=encoder_heads,
|
89 |
+
dim_feedforward=encoder_dim_feedforward
|
90 |
+
),
|
91 |
+
num_layers=encoder_layers,
|
92 |
+
)
|
93 |
+
).to(device)
|
94 |
+
|
95 |
+
# linear layer to match T5 embedding dimension
|
96 |
+
self.linear = (nn.Linear(
|
97 |
+
in_features=encoder_input_dimension,
|
98 |
+
out_features=encoder_output_dimension)
|
99 |
+
.to(device))
|
100 |
+
|
101 |
+
def forward(self, x):
|
102 |
+
assert x.dim() == 3
|
103 |
+
x = torch.transpose(x, 0, 1) # encoder expects [sequence_length, batch_size, embedding_dimension]
|
104 |
+
x = self.encoder(x) # encoder forward pass
|
105 |
+
x = self.linear(x) # forward pass through the linear layer
|
106 |
+
x = torch.transpose(x, 0, 1) # shape: [batch_size, sequence_length, embedding_dimension]
|
107 |
+
return x
|
108 |
+
|
109 |
+
|
110 |
+
class VideoFeatureExtractor(nn.Module):
|
111 |
+
def __init__(self,
|
112 |
+
device: str,
|
113 |
+
video_extraction_framerate: int = 1,
|
114 |
+
resnet_output_dimension: int = 2048):
|
115 |
+
super().__init__()
|
116 |
+
self.device = device
|
117 |
+
|
118 |
+
# using a ResNet trained on ImageNet
|
119 |
+
self.resnet = resnet50(weights="IMAGENET1K_V2").eval()
|
120 |
+
self.resnet = torch.nn.Sequential(*(list(self.resnet.children())[:-1])).to(device) # remove ResNet layer
|
121 |
+
self.resnet_preprocessor = ResNet50_Weights.DEFAULT.transforms().to(device)
|
122 |
+
self.video_extraction_framerate = video_extraction_framerate # setting the fps at which the video is processed
|
123 |
+
self.positional_encoder = PositionalEncoding(resnet_output_dimension).to(device)
|
124 |
+
|
125 |
+
def forward(self, video: mpe.VideoFileClip):
|
126 |
+
embeddings = []
|
127 |
+
for i in range(0, 30 * self.video_extraction_framerate):
|
128 |
+
i = video.get_frame(i) # get frame as numpy array
|
129 |
+
i = Image.fromarray(i) # create PIL image from numpy array
|
130 |
+
i = self.resnet_preprocessor(i) # preprocess image
|
131 |
+
i = i.to(self.device)
|
132 |
+
i = i.unsqueeze(0) # adding a batch dimension
|
133 |
+
i = self.resnet(i).squeeze() # ResNet forward pass
|
134 |
+
i = i.squeeze()
|
135 |
+
embeddings.append(i) # collect embeddings
|
136 |
+
|
137 |
+
embeddings = torch.stack(embeddings) # concatenate all frame embeddings into one video embedding
|
138 |
+
embeddings = embeddings.unsqueeze(1)
|
139 |
+
embeddings = self.positional_encoder(embeddings) # apply positional encoding with a sequence length of 30
|
140 |
+
embeddings = embeddings.squeeze()
|
141 |
+
return embeddings
|
142 |
+
|
143 |
+
|
144 |
+
# from https://pytorch.org/tutorials/beginner/transformer_tutorial.html
|
145 |
+
class PositionalEncoding(nn.Module):
|
146 |
+
def __init__(self, d_model: int, dropout: float = 0.1, max_length: int = 30):
|
147 |
+
super().__init__()
|
148 |
+
self.dropout = nn.Dropout(p=dropout)
|
149 |
+
position = torch.arange(30).unsqueeze(1)
|
150 |
+
div_term = torch.exp(torch.arange(0, d_model, 2) * (-math.log(10000.0) / d_model))
|
151 |
+
pe = torch.zeros(30, 1, d_model)
|
152 |
+
pe[:, 0, 0::2] = torch.sin(position * div_term)
|
153 |
+
pe[:, 0, 1::2] = torch.cos(position * div_term)
|
154 |
+
self.register_buffer('pe', pe)
|
155 |
+
|
156 |
+
def forward(self, x: Tensor) -> Tensor:
|
157 |
+
x = x + self.pe[:x.size(0)]
|
158 |
+
return self.dropout(x)
|
159 |
+
|
160 |
+
|
161 |
+
def freeze_model(model: nn.Module):
|
162 |
+
for param in model.parameters():
|
163 |
+
param.requires_grad = False
|
164 |
+
model.eval()
|
165 |
+
|
166 |
+
|
167 |
+
def split_dataset_randomly(dataset, validation_split: float, test_split: float, seed: int = None):
|
168 |
+
dataset_size = len(dataset)
|
169 |
+
indices = list(range(dataset_size))
|
170 |
+
datapoints_validation = int(np.floor(validation_split * dataset_size))
|
171 |
+
datapoints_testing = int(np.floor(test_split * dataset_size))
|
172 |
+
|
173 |
+
if seed:
|
174 |
+
np.random.seed(seed)
|
175 |
+
|
176 |
+
np.random.shuffle(indices) # in-place operation
|
177 |
+
training = indices[datapoints_validation + datapoints_testing:]
|
178 |
+
validation = indices[datapoints_validation:datapoints_testing + datapoints_validation]
|
179 |
+
testing = indices[:datapoints_testing]
|
180 |
+
|
181 |
+
assert len(validation) == datapoints_validation, "Validation set length incorrect"
|
182 |
+
assert len(testing) == datapoints_testing, "Testing set length incorrect"
|
183 |
+
assert len(training) == dataset_size - (datapoints_testing + datapoints_testing), "Training set length incorrect"
|
184 |
+
assert not any([item in training for item in validation]), "Training and Validation overlap"
|
185 |
+
assert not any([item in training for item in testing]), "Training and Testing overlap"
|
186 |
+
assert not any([item in validation for item in testing]), "Validation and Testing overlap"
|
187 |
+
|
188 |
+
return training, validation, testing
|
189 |
+
|
190 |
+
|
191 |
+
### private function from audiocraft.solver.musicgen.py => _compute_cross_entropy
|
192 |
+
def compute_cross_entropy(logits: torch.Tensor, targets: torch.Tensor, mask: torch.Tensor):
|
193 |
+
"""Compute cross entropy between multi-codebook targets and model's logits.
|
194 |
+
The cross entropy is computed per codebook to provide codebook-level cross entropy.
|
195 |
+
Valid timesteps for each of the codebook are pulled from the mask, where invalid
|
196 |
+
timesteps are set to 0.
|
197 |
+
|
198 |
+
Args:
|
199 |
+
logits (torch.Tensor): Model's logits of shape [B, K, T, card].
|
200 |
+
targets (torch.Tensor): Target codes, of shape [B, K, T].
|
201 |
+
mask (torch.Tensor): Mask for valid target codes, of shape [B, K, T].
|
202 |
+
Returns:
|
203 |
+
ce (torch.Tensor): Cross entropy averaged over the codebooks
|
204 |
+
ce_per_codebook (list of torch.Tensor): Cross entropy per codebook (detached).
|
205 |
+
"""
|
206 |
+
B, K, T = targets.shape
|
207 |
+
assert logits.shape[:-1] == targets.shape
|
208 |
+
assert mask.shape == targets.shape
|
209 |
+
ce = torch.zeros([], device=targets.device)
|
210 |
+
ce_per_codebook = []
|
211 |
+
for k in range(K):
|
212 |
+
logits_k = logits[:, k, ...].contiguous().view(-1, logits.size(-1)) # [B x T, card]
|
213 |
+
targets_k = targets[:, k, ...].contiguous().view(-1) # [B x T]
|
214 |
+
mask_k = mask[:, k, ...].contiguous().view(-1) # [B x T]
|
215 |
+
ce_targets = targets_k[mask_k]
|
216 |
+
ce_logits = logits_k[mask_k]
|
217 |
+
q_ce = F.cross_entropy(ce_logits, ce_targets)
|
218 |
+
ce += q_ce
|
219 |
+
ce_per_codebook.append(q_ce.detach())
|
220 |
+
# average cross entropy across codebooks
|
221 |
+
ce = ce / K
|
222 |
+
return ce, ce_per_codebook
|
223 |
+
|
224 |
+
|
225 |
+
def generate_audio_codes(audio_paths: [str],
|
226 |
+
audiocraft_compression_model: torch.nn.Module,
|
227 |
+
device: str) -> torch.Tensor:
|
228 |
+
audio_duration = 30
|
229 |
+
encodec_sample_rate = audiocraft_compression_model.sample_rate
|
230 |
+
|
231 |
+
torch_audios = []
|
232 |
+
for audio_path in audio_paths:
|
233 |
+
wav, original_sample_rate = torchaudio.load(audio_path) # load audio from file
|
234 |
+
wav = torchaudio.functional.resample(wav, original_sample_rate,
|
235 |
+
encodec_sample_rate) # cast audio to model sample rate
|
236 |
+
wav = wav[:, :encodec_sample_rate * audio_duration] # enforce an exact audio length of 30 seconds
|
237 |
+
|
238 |
+
assert len(wav.shape) == 2, f"audio data is not of shape [channels, duration]"
|
239 |
+
assert wav.shape[0] == 2, "audio data should be in stereo, but has not 2 channels"
|
240 |
+
|
241 |
+
torch_audios.append(wav)
|
242 |
+
|
243 |
+
torch_audios = torch.stack(torch_audios)
|
244 |
+
torch_audios = torch_audios.to(device)
|
245 |
+
|
246 |
+
with torch.no_grad():
|
247 |
+
gen_audio = audiocraft_compression_model.encode(torch_audios)
|
248 |
+
|
249 |
+
codes, scale = gen_audio
|
250 |
+
assert scale is None
|
251 |
+
|
252 |
+
return codes
|
253 |
+
|
254 |
+
|
255 |
+
def create_condition_tensors(
|
256 |
+
video_embeddings: torch.Tensor,
|
257 |
+
batch_size: int,
|
258 |
+
video_extraction_framerate: int,
|
259 |
+
device: str
|
260 |
+
):
|
261 |
+
mask = torch.ones((batch_size, video_extraction_framerate * 30), dtype=torch.int).to(device)
|
262 |
+
|
263 |
+
condition_tensors = {
|
264 |
+
'description': (video_embeddings, mask)
|
265 |
+
}
|
266 |
+
return condition_tensors
|
267 |
+
|
268 |
+
|
269 |
+
def get_current_timestamp():
|
270 |
+
return strftime("%Y_%m_%d___%H_%M_%S")
|
271 |
+
|
272 |
+
|
273 |
+
def configure_logging(output_dir: str, filename: str, log_level):
|
274 |
+
# create logs folder, if not existing
|
275 |
+
os.makedirs(output_dir, exist_ok=True)
|
276 |
+
level = getattr(logging, log_level)
|
277 |
+
file_path = output_dir + "/" + filename
|
278 |
+
logging.basicConfig(filename=file_path, encoding='utf-8', level=level)
|
279 |
+
logger = logging.getLogger()
|
280 |
+
# only add a StreamHandler if it is not present yet
|
281 |
+
if len(logger.handlers) <= 1:
|
282 |
+
logger.addHandler(logging.StreamHandler())
|