TheBloke commited on
Commit
fd6b601
·
1 Parent(s): dbe2ec7

Upload README.md

Browse files
Files changed (1) hide show
  1. README.md +19 -18
README.md CHANGED
@@ -31,7 +31,6 @@ quantized_by: TheBloke
31
  # LLaMA 33B - GGUF
32
  - Model creator: [Meta](https://huggingface.co/none)
33
  - Original model: [LLaMA 33B](https://ai.meta.com/blog/large-language-model-llama-meta-ai)
34
- - Original model card: [Link to original model card in this repo](#original-model-card-metas-llama-30b)
35
 
36
  <!-- description start -->
37
  ## Description
@@ -42,7 +41,7 @@ This repo contains GGUF format model files for [Meta's LLaMA 30b](https://ai.met
42
  <!-- README_GGUF.md-about-gguf start -->
43
  ### About GGUF
44
 
45
- GGUF is a new format introduced by the llama.cpp team on August 21st 2023. It is a replacement for GGML, which is no longer supported by llama.cpp. GGUF offers numerous advantages over GGML, such as better tokenisation, and support for special tokens. It is also supports metadata, and is designed to be extensible.
46
 
47
  Here is an incomplate list of clients and libraries that are known to support GGUF:
48
 
@@ -80,7 +79,7 @@ Here is an incomplate list of clients and libraries that are known to support GG
80
  <!-- compatibility_gguf start -->
81
  ## Compatibility
82
 
83
- These quantised GGUFv2 files are compatible with llama.cpp from August 27th onwards, as of commit [d0cee0d36d5be95a0d9088b674dbb27354107221](https://github.com/ggerganov/llama.cpp/commit/d0cee0d36d5be95a0d9088b674dbb27354107221)
84
 
85
  They are also compatible with many third party UIs and libraries - please see the list at the top of this README.
86
 
@@ -173,25 +172,25 @@ pip3 install hf_transfer
173
  And set environment variable `HF_HUB_ENABLE_HF_TRANSFER` to `1`:
174
 
175
  ```shell
176
- HUGGINGFACE_HUB_ENABLE_HF_TRANSFER=1 huggingface-cli download TheBloke/LLaMA-30b-GGUF llama-30b.Q4_K_M.gguf --local-dir . --local-dir-use-symlinks False
177
  ```
178
 
179
- Windows CLI users: Use `set HUGGINGFACE_HUB_ENABLE_HF_TRANSFER=1` before running the download command.
180
  </details>
181
  <!-- README_GGUF.md-how-to-download end -->
182
 
183
  <!-- README_GGUF.md-how-to-run start -->
184
  ## Example `llama.cpp` command
185
 
186
- Make sure you are using `llama.cpp` from commit [d0cee0d36d5be95a0d9088b674dbb27354107221](https://github.com/ggerganov/llama.cpp/commit/d0cee0d36d5be95a0d9088b674dbb27354107221) or later.
187
 
188
  ```shell
189
- ./main -ngl 32 -m llama-30b.Q4_K_M.gguf --color -c 4096 --temp 0.7 --repeat_penalty 1.1 -n -1 -p "{prompt}"
190
  ```
191
 
192
  Change `-ngl 32` to the number of layers to offload to GPU. Remove it if you don't have GPU acceleration.
193
 
194
- Change `-c 4096` to the desired sequence length. For extended sequence models - eg 8K, 16K, 32K - the necessary RoPE scaling parameters are read from the GGUF file and set by llama.cpp automatically.
195
 
196
  If you want to have a chat-style conversation, replace the `-p <PROMPT>` argument with `-i -ins`
197
 
@@ -205,22 +204,24 @@ Further instructions here: [text-generation-webui/docs/llama.cpp.md](https://git
205
 
206
  You can use GGUF models from Python using the [llama-cpp-python](https://github.com/abetlen/llama-cpp-python) or [ctransformers](https://github.com/marella/ctransformers) libraries.
207
 
208
- ### How to load this model from Python using ctransformers
209
 
210
  #### First install the package
211
 
212
- ```bash
 
 
213
  # Base ctransformers with no GPU acceleration
214
- pip install ctransformers>=0.2.24
215
  # Or with CUDA GPU acceleration
216
- pip install ctransformers[cuda]>=0.2.24
217
- # Or with ROCm GPU acceleration
218
- CT_HIPBLAS=1 pip install ctransformers>=0.2.24 --no-binary ctransformers
219
- # Or with Metal GPU acceleration for macOS systems
220
- CT_METAL=1 pip install ctransformers>=0.2.24 --no-binary ctransformers
221
  ```
222
 
223
- #### Simple example code to load one of these GGUF models
224
 
225
  ```python
226
  from ctransformers import AutoModelForCausalLM
@@ -233,7 +234,7 @@ print(llm("AI is going to"))
233
 
234
  ## How to use with LangChain
235
 
236
- Here's guides on using llama-cpp-python or ctransformers with LangChain:
237
 
238
  * [LangChain + llama-cpp-python](https://python.langchain.com/docs/integrations/llms/llamacpp)
239
  * [LangChain + ctransformers](https://python.langchain.com/docs/integrations/providers/ctransformers)
 
31
  # LLaMA 33B - GGUF
32
  - Model creator: [Meta](https://huggingface.co/none)
33
  - Original model: [LLaMA 33B](https://ai.meta.com/blog/large-language-model-llama-meta-ai)
 
34
 
35
  <!-- description start -->
36
  ## Description
 
41
  <!-- README_GGUF.md-about-gguf start -->
42
  ### About GGUF
43
 
44
+ GGUF is a new format introduced by the llama.cpp team on August 21st 2023. It is a replacement for GGML, which is no longer supported by llama.cpp.
45
 
46
  Here is an incomplate list of clients and libraries that are known to support GGUF:
47
 
 
79
  <!-- compatibility_gguf start -->
80
  ## Compatibility
81
 
82
+ These quantised GGUFv2 files are compatible with llama.cpp from August 27th onwards, as of commit [d0cee0d](https://github.com/ggerganov/llama.cpp/commit/d0cee0d36d5be95a0d9088b674dbb27354107221)
83
 
84
  They are also compatible with many third party UIs and libraries - please see the list at the top of this README.
85
 
 
172
  And set environment variable `HF_HUB_ENABLE_HF_TRANSFER` to `1`:
173
 
174
  ```shell
175
+ HF_HUB_ENABLE_HF_TRANSFER=1 huggingface-cli download TheBloke/LLaMA-30b-GGUF llama-30b.Q4_K_M.gguf --local-dir . --local-dir-use-symlinks False
176
  ```
177
 
178
+ Windows Command Line users: You can set the environment variable by running `set HF_HUB_ENABLE_HF_TRANSFER=1` before the download command.
179
  </details>
180
  <!-- README_GGUF.md-how-to-download end -->
181
 
182
  <!-- README_GGUF.md-how-to-run start -->
183
  ## Example `llama.cpp` command
184
 
185
+ Make sure you are using `llama.cpp` from commit [d0cee0d](https://github.com/ggerganov/llama.cpp/commit/d0cee0d36d5be95a0d9088b674dbb27354107221) or later.
186
 
187
  ```shell
188
+ ./main -ngl 32 -m llama-30b.Q4_K_M.gguf --color -c 2048 --temp 0.7 --repeat_penalty 1.1 -n -1 -p "{prompt}"
189
  ```
190
 
191
  Change `-ngl 32` to the number of layers to offload to GPU. Remove it if you don't have GPU acceleration.
192
 
193
+ Change `-c 2048` to the desired sequence length. For extended sequence models - eg 8K, 16K, 32K - the necessary RoPE scaling parameters are read from the GGUF file and set by llama.cpp automatically.
194
 
195
  If you want to have a chat-style conversation, replace the `-p <PROMPT>` argument with `-i -ins`
196
 
 
204
 
205
  You can use GGUF models from Python using the [llama-cpp-python](https://github.com/abetlen/llama-cpp-python) or [ctransformers](https://github.com/marella/ctransformers) libraries.
206
 
207
+ ### How to load this model in Python code, using ctransformers
208
 
209
  #### First install the package
210
 
211
+ Run one of the following commands, according to your system:
212
+
213
+ ```shell
214
  # Base ctransformers with no GPU acceleration
215
+ pip install ctransformers
216
  # Or with CUDA GPU acceleration
217
+ pip install ctransformers[cuda]
218
+ # Or with AMD ROCm GPU acceleration (Linux only)
219
+ CT_HIPBLAS=1 pip install ctransformers --no-binary ctransformers
220
+ # Or with Metal GPU acceleration for macOS systems only
221
+ CT_METAL=1 pip install ctransformers --no-binary ctransformers
222
  ```
223
 
224
+ #### Simple ctransformers example code
225
 
226
  ```python
227
  from ctransformers import AutoModelForCausalLM
 
234
 
235
  ## How to use with LangChain
236
 
237
+ Here are guides on using llama-cpp-python and ctransformers with LangChain:
238
 
239
  * [LangChain + llama-cpp-python](https://python.langchain.com/docs/integrations/llms/llamacpp)
240
  * [LangChain + ctransformers](https://python.langchain.com/docs/integrations/providers/ctransformers)