File size: 18,289 Bytes
30721e8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 |
---
license: apache-2.0
language:
- zh
base_model:
- stabilityai/stable-diffusion-3-medium
pipeline_tag: text-to-image
---
![FLUX.1 [schnell] Grid](./PEA-Diffusion.png)
`MultilingualSD3-adapter` is a multilingual adapter tailored for the [SD3](https://huggingface.co/stabilityai/stable-diffusion-3-medium). Originating from an ECCV 2024 paper titled [PEA-Diffusion](https://arxiv.org/abs/2311.17086). The open-source code is available at https://github.com/OPPO-Mente-Lab/PEA-Diffusion.
# Usage
We used the multilingual encoder [umt5-xxl](https://huggingface.co/google/umt5-xxl),[Mul-OpenCLIP](https://huggingface.co/laion/CLIP-ViT-H-14-frozen-xlm-roberta-large-laion5B-s13B-b90k) and [HunyuanDiT_CLIP](https://huggingface.co/Tencent-Hunyuan/HunyuanDiT/tree/main/t2i). We implemented a reverse denoising process for distillation training.
## `MultilingualSD3`
```python
import os
import torch
import torch.nn as nn
from typing import Any, Callable, Dict, List, Optional, Union
import inspect
from diffusers.models.transformers import SD3Transformer2DModel
from diffusers.image_processor import VaeImageProcessor
from diffusers.schedulers import FlowMatchEulerDiscreteScheduler
from diffusers import AutoencoderKL
from tqdm import tqdm
from PIL import Image
from transformers import T5Tokenizer,T5EncoderModel,BertModel, BertTokenizer
import open_clip
class MLP(nn.Module):
def __init__(self, in_dim=1024, out_dim=2048, hidden_dim=2048, out_dim1=4096, use_residual=True):
super().__init__()
if use_residual:
assert in_dim == out_dim
self.layernorm = nn.LayerNorm(in_dim)
self.projector = nn.Sequential(
nn.Linear(in_dim, hidden_dim, bias=False),
nn.GELU(),
nn.Linear(hidden_dim, hidden_dim, bias=False),
nn.GELU(),
nn.Linear(hidden_dim, hidden_dim, bias=False),
nn.GELU(),
nn.Linear(hidden_dim, out_dim, bias=False),
)
self.fc = nn.Linear(out_dim, out_dim1)
self.use_residual = use_residual
def forward(self, x):
residual = x
x = self.layernorm(x)
x = self.projector(x)
x2 = nn.GELU()(x)
x2 = self.fc(x2)
return x2
class Transformer(nn.Module):
def __init__(self, d_model, n_heads, out_dim1, out_dim2,num_layers=1) -> None:
super().__init__()
self.encoder_layer = nn.TransformerEncoderLayer(d_model=d_model, nhead=n_heads, dim_feedforward=2048, batch_first=True)
self.transformer_encoder = nn.TransformerEncoder(self.encoder_layer, num_layers=num_layers)
self.linear1 = nn.Linear(d_model, out_dim1)
self.linear2 = nn.Linear(d_model, out_dim2)
def forward(self, x):
x = self.transformer_encoder(x)
x1 = self.linear1(x)
x1 = torch.mean(x1,1)
x2 = self.linear2(x)
return x1,x2
def image_grid(imgs, rows, cols):
assert len(imgs) == rows*cols
w, h = imgs[0].size
grid = Image.new('RGB', size=(cols*w, rows*h))
grid_w, grid_h = grid.size
for i, img in enumerate(imgs):
grid.paste(img, box=(i%cols*w, i//cols*h))
return grid
def retrieve_timesteps(
scheduler,
num_inference_steps: Optional[int] = None,
device: Optional[Union[str, torch.device]] = None,
timesteps: Optional[List[int]] = None,
sigmas: Optional[List[float]] = None,
**kwargs,
):
if timesteps is not None and sigmas is not None:
raise ValueError("Only one of `timesteps` or `sigmas` can be passed. Please choose one to set custom values")
if timesteps is not None:
accepts_timesteps = "timesteps" in set(inspect.signature(scheduler.set_timesteps).parameters.keys())
if not accepts_timesteps:
raise ValueError(
f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom"
f" timestep schedules. Please check whether you are using the correct scheduler."
)
scheduler.set_timesteps(timesteps=timesteps, device=device, **kwargs)
timesteps = scheduler.timesteps
num_inference_steps = len(timesteps)
elif sigmas is not None:
accept_sigmas = "sigmas" in set(inspect.signature(scheduler.set_timesteps).parameters.keys())
if not accept_sigmas:
raise ValueError(
f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom"
f" sigmas schedules. Please check whether you are using the correct scheduler."
)
scheduler.set_timesteps(sigmas=sigmas, device=device, **kwargs)
timesteps = scheduler.timesteps
num_inference_steps = len(timesteps)
else:
scheduler.set_timesteps(num_inference_steps, device=device, **kwargs)
timesteps = scheduler.timesteps
return timesteps, num_inference_steps
class StableDiffusionTest():
def __init__(self,model_path,text_encoder_path,text_encoder_path1,text_encoder_path2,proj_path,proj_t5_path):
super().__init__()
self.transformer = SD3Transformer2DModel.from_pretrained(model_path, subfolder="transformer",torch_dtype=dtype).to(device)
self.vae = AutoencoderKL.from_pretrained(model_path, subfolder="vae").to(device,dtype=dtype)
self.scheduler = FlowMatchEulerDiscreteScheduler.from_pretrained(model_path, subfolder="scheduler")
self.vae_scale_factor = (
2 ** (len(self.vae.config.block_out_channels) - 1) if hasattr(self, "vae") and self.vae is not None else 8
)
self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor)
self.default_sample_size = (
self.transformer.config.sample_size
if hasattr(self, "transformer") and self.transformer is not None
else 128
)
self.text_encoder_t5 = T5EncoderModel.from_pretrained(text_encoder_path).to(device,dtype=dtype)
self.tokenizer_t5 = T5Tokenizer.from_pretrained(text_encoder_path)
self.text_encoder = BertModel.from_pretrained(f"{text_encoder_path1}/clip_text_encoder", False, revision=None).to(device,dtype=dtype)
self.tokenizer = BertTokenizer.from_pretrained(f"{text_encoder_path1}/tokenizer")
self.text_encoder2, _, _ = open_clip.create_model_and_transforms('xlm-roberta-large-ViT-H-14', pretrained=text_encoder_path2)
self.tokenizer2 = open_clip.get_tokenizer('xlm-roberta-large-ViT-H-14')
self.text_encoder2.text.output_tokens = True
self.text_encoder2 = self.text_encoder2.to(device,dtype=dtype)
self.proj = MLP(2048, 2048, 2048, 4096, use_residual=False).to(device,dtype=dtype)
self.proj.load_state_dict(torch.load(proj_path, map_location="cpu"))
self.proj_t5 = Transformer(d_model=4096, n_heads=8, out_dim1=2048, out_dim2=4096).to(device,dtype=dtype)
self.proj_t5.load_state_dict(torch.load(proj_t5_path, map_location="cpu"))
def encode_prompt(self, prompt, device, do_classifier_free_guidance=True, negative_prompt=None):
batch_size = len(prompt) if isinstance(prompt, list) else 1
text_input_ids_t5 = self.tokenizer_t5(
prompt,
padding="max_length",
max_length=77,
truncation=True,
add_special_tokens=False,
return_tensors="pt",
).input_ids.to(device)
text_embeddings = self.text_encoder_t5(text_input_ids_t5)
text_inputs = self.tokenizer(
prompt,
padding="max_length",
max_length=77,
truncation=True,
return_tensors="pt",
)
input_ids = text_inputs.input_ids.to(device)
attention_mask = text_inputs.attention_mask.to(device)
encoder_hidden_states = self.text_encoder(input_ids,attention_mask=attention_mask)[0]
text_input_ids = self.tokenizer2(prompt).to(device)
_,encoder_hidden_states2 = self.text_encoder2.encode_text(text_input_ids)
encoder_hidden_states = torch.cat([encoder_hidden_states, encoder_hidden_states2], dim=-1)
encoder_hidden_states_t5 = text_embeddings[0]
encoder_hidden_states = self.proj(encoder_hidden_states)
add_text_embeds,encoder_hidden_states_t5 = self.proj_t5(encoder_hidden_states_t5.half())
prompt_embeds = torch.cat([encoder_hidden_states, encoder_hidden_states_t5], dim=-2)
# get unconditional embeddings for classifier free guidance
if do_classifier_free_guidance:
if negative_prompt is None:
uncond_tokens = [""] * batch_size
else:
uncond_tokens = negative_prompt
text_input_ids_t5 = self.tokenizer_t5(
uncond_tokens,
padding="max_length",
max_length=77,
truncation=True,
add_special_tokens=False,
return_tensors="pt",
).input_ids.to(device)
text_embeddings = self.text_encoder_t5(text_input_ids_t5)
text_inputs = self.tokenizer(
uncond_tokens,
padding="max_length",
max_length=77,
truncation=True,
return_tensors="pt",
)
input_ids = text_inputs.input_ids.to(device)
attention_mask = text_inputs.attention_mask.to(device)
encoder_hidden_states = self.text_encoder(input_ids,attention_mask=attention_mask)[0]
text_input_ids = self.tokenizer2(uncond_tokens).to(device)
_,encoder_hidden_states2 = self.text_encoder2.encode_text(text_input_ids)
encoder_hidden_states = torch.cat([encoder_hidden_states, encoder_hidden_states2], dim=-1)
encoder_hidden_states_t5 = text_embeddings[0]
encoder_hidden_states_uncond = self.proj(encoder_hidden_states)
add_text_embeds_uncond,encoder_hidden_states_t5_uncond = self.proj_t5(encoder_hidden_states_t5.half())
prompt_embeds_uncond = torch.cat([encoder_hidden_states_uncond, encoder_hidden_states_t5_uncond], dim=-2)
prompt_embeds = torch.cat([prompt_embeds_uncond, prompt_embeds], dim=0)
pooled_prompt_embeds = torch.cat([add_text_embeds_uncond, add_text_embeds], dim=0)
return prompt_embeds,pooled_prompt_embeds
def prepare_latents(
self,
batch_size,
num_channels_latents,
height,
width,
dtype,
device,
generator,
latents=None,
):
if latents is not None:
return latents.to(device=device, dtype=dtype)
shape = (
batch_size,
num_channels_latents,
int(height) // self.vae_scale_factor,
int(width) // self.vae_scale_factor,
)
if isinstance(generator, list) and len(generator) != batch_size:
raise ValueError(
f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
f" size of {batch_size}. Make sure the batch size matches the length of the generators."
)
latents = torch.randn(shape, generator=generator, dtype=dtype).to(device)
return latents
@property
def guidance_scale(self):
return self._guidance_scale
@property
def clip_skip(self):
return self._clip_skip
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
# of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
# corresponds to doing no classifier free guidance.
@property
def do_classifier_free_guidance(self):
return self._guidance_scale > 1
@property
def joint_attention_kwargs(self):
return self._joint_attention_kwargs
@property
def num_timesteps(self):
return self._num_timesteps
@property
def interrupt(self):
return self._interrupt
@torch.no_grad()
def __call__(
self,
prompt: Union[str, List[str]] = None,
prompt_2: Optional[Union[str, List[str]]] = None,
prompt_3: Optional[Union[str, List[str]]] = None,
height: Optional[int] = None,
width: Optional[int] = None,
num_inference_steps: int = 28,
timesteps: List[int] = None,
guidance_scale: float = 7.0,
negative_prompt: Optional[Union[str, List[str]]] = None,
negative_prompt_2: Optional[Union[str, List[str]]] = None,
negative_prompt_3: Optional[Union[str, List[str]]] = None,
num_images_per_prompt: Optional[int] = 1,
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
latents: Optional[torch.FloatTensor] = None,
prompt_embeds: Optional[torch.FloatTensor] = None,
negative_prompt_embeds: Optional[torch.FloatTensor] = None,
pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
negative_pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
output_type: Optional[str] = "pil",
return_dict: bool = True,
joint_attention_kwargs: Optional[Dict[str, Any]] = None,
clip_skip: Optional[int] = None,
callback_on_step_end: Optional[Callable[[int, int, Dict], None]] = None,
callback_on_step_end_tensor_inputs: List[str] = ["latents"],
):
height = height or self.default_sample_size * self.vae_scale_factor
width = width or self.default_sample_size * self.vae_scale_factor
self._guidance_scale = guidance_scale
self._clip_skip = clip_skip
self._joint_attention_kwargs = joint_attention_kwargs
self._interrupt = False
if prompt is not None and isinstance(prompt, str):
batch_size = 1
elif prompt is not None and isinstance(prompt, list):
batch_size = len(prompt)
else:
batch_size = prompt_embeds.shape[0]
prompt_embeds,pooled_prompt_embeds = self.encode_prompt(prompt, device)
timesteps, num_inference_steps = retrieve_timesteps(self.scheduler, num_inference_steps, device, timesteps)
num_warmup_steps = max(len(timesteps) - num_inference_steps * self.scheduler.order, 0)
self._num_timesteps = len(timesteps)
num_channels_latents = self.transformer.config.in_channels
latents = self.prepare_latents(
batch_size * num_images_per_prompt,
num_channels_latents,
height,
width,
prompt_embeds.dtype,
device,
generator,
latents,
)
for i, t in tqdm(enumerate(timesteps)):
if self.interrupt:
continue
latent_model_input = torch.cat([latents] * 2) if self.do_classifier_free_guidance else latents
timestep = t.expand(latent_model_input.shape[0]).to(dtype=dtype)
noise_pred = self.transformer(
hidden_states=latent_model_input,
timestep=timestep,
encoder_hidden_states=prompt_embeds.to(dtype=self.transformer.dtype),
pooled_projections=pooled_prompt_embeds.to(dtype=self.transformer.dtype),
joint_attention_kwargs=self.joint_attention_kwargs,
return_dict=False,
)[0]
if self.do_classifier_free_guidance:
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
noise_pred = noise_pred_uncond + self.guidance_scale * (noise_pred_text - noise_pred_uncond)
latents_dtype = latents.dtype
latents = self.scheduler.step(noise_pred, t, latents, return_dict=False)[0]
if latents.dtype != latents_dtype:
if torch.backends.mps.is_available():
latents = latents.to(latents_dtype)
if callback_on_step_end is not None:
callback_kwargs = {}
for k in callback_on_step_end_tensor_inputs:
callback_kwargs[k] = locals()[k]
callback_outputs = callback_on_step_end(self, i, t, callback_kwargs)
latents = callback_outputs.pop("latents", latents)
prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds)
negative_prompt_embeds = callback_outputs.pop("negative_prompt_embeds", negative_prompt_embeds)
negative_pooled_prompt_embeds = callback_outputs.pop(
"negative_pooled_prompt_embeds", negative_pooled_prompt_embeds
)
if output_type == "latent":
image = latents
else:
latents = (latents / self.vae.config.scaling_factor) + self.vae.config.shift_factor
image = self.vae.decode(latents, return_dict=False)[0]
image = self.image_processor.postprocess(image, output_type=output_type)
return image
if __name__ == '__main__':
device = "cuda"
dtype = torch.float16
text_encoder_path = 'google/umt5-xxl'
text_encoder_path1 = "Tencent-Hunyuan/HunyuanDiT/t2i"
text_encoder_path2 = 'laion/CLIP-ViT-H-14-frozen-xlm-roberta-large-laion5B-s13B-b90k/open_clip_pytorch_model.bin'
model_path = "stabilityai/stable-diffusion-3-medium-diffusers"
proj_path = "OPPOer/MultilingualSD3-adapter/pytorch_model.bin"
proj_t5_path = "OPPOer/MultilingualSD3-adapter/pytorch_model_t5.bin"
sdt = StableDiffusionTest(model_path,text_encoder_path,text_encoder_path1,text_encoder_path2,proj_path,proj_t5_path)
batch=2
height = 1024
width = 1024
while True:
raw_text = input("\nPlease Input Query (stop to exit) >>> ")
if not raw_text:
print('Query should not be empty!')
continue
if raw_text == "stop":
break
images = sdt([raw_text]*batch,height=height,width=width)
grid = image_grid(images, rows=1, cols=batch)
grid.save("MultilingualSD3.png")
```
To learn more check out the [diffusers](https://huggingface.co/docs/diffusers/main/en/api/pipelines/flux) documentation
# License
The adapter itself is Apache License 2.0, but it must follow the license of the main model. |