Text-to-Image
PyTorch
Chinese
File size: 18,289 Bytes
30721e8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
---
license: apache-2.0
language:
- zh
base_model:
- stabilityai/stable-diffusion-3-medium
pipeline_tag: text-to-image
---


![FLUX.1 [schnell] Grid](./PEA-Diffusion.png)

`MultilingualSD3-adapter` is a multilingual adapter tailored for the [SD3](https://huggingface.co/stabilityai/stable-diffusion-3-medium). Originating from an ECCV 2024 paper titled [PEA-Diffusion](https://arxiv.org/abs/2311.17086). The open-source code is available at https://github.com/OPPO-Mente-Lab/PEA-Diffusion.


# Usage
We used the multilingual encoder [umt5-xxl](https://huggingface.co/google/umt5-xxl),[Mul-OpenCLIP](https://huggingface.co/laion/CLIP-ViT-H-14-frozen-xlm-roberta-large-laion5B-s13B-b90k) and [HunyuanDiT_CLIP](https://huggingface.co/Tencent-Hunyuan/HunyuanDiT/tree/main/t2i). We implemented a reverse denoising process for distillation training. 


## `MultilingualSD3`


```python
import os
import torch
import torch.nn as nn

from typing import Any, Callable, Dict, List, Optional, Union
import inspect
from diffusers.models.transformers import SD3Transformer2DModel
from diffusers.image_processor import VaeImageProcessor
from diffusers.schedulers import FlowMatchEulerDiscreteScheduler
from diffusers import AutoencoderKL
from tqdm import tqdm
from PIL import Image

from transformers import T5Tokenizer,T5EncoderModel,BertModel, BertTokenizer
import open_clip


class MLP(nn.Module):
    def __init__(self, in_dim=1024, out_dim=2048, hidden_dim=2048, out_dim1=4096, use_residual=True):
        super().__init__()
        if use_residual:
            assert in_dim == out_dim
        self.layernorm = nn.LayerNorm(in_dim)
        self.projector = nn.Sequential(
            nn.Linear(in_dim, hidden_dim, bias=False),
            nn.GELU(),
            nn.Linear(hidden_dim, hidden_dim, bias=False),
            nn.GELU(),
            nn.Linear(hidden_dim, hidden_dim, bias=False),
            nn.GELU(),
            nn.Linear(hidden_dim, out_dim, bias=False),
        )
        self.fc = nn.Linear(out_dim, out_dim1)
        self.use_residual = use_residual
    def forward(self, x):
        residual = x
        x = self.layernorm(x)
        x = self.projector(x)
        x2 = nn.GELU()(x)
        x2 = self.fc(x2)
        return x2

class Transformer(nn.Module):
    def __init__(self, d_model,  n_heads, out_dim1, out_dim2,num_layers=1) -> None:
        super().__init__()

        self.encoder_layer = nn.TransformerEncoderLayer(d_model=d_model, nhead=n_heads, dim_feedforward=2048, batch_first=True)
        self.transformer_encoder = nn.TransformerEncoder(self.encoder_layer, num_layers=num_layers)
        self.linear1 = nn.Linear(d_model, out_dim1)
        self.linear2 = nn.Linear(d_model, out_dim2)
    
    def forward(self, x):
        x = self.transformer_encoder(x)
        x1 = self.linear1(x)
        x1 = torch.mean(x1,1)
        x2 = self.linear2(x)
        return x1,x2


def image_grid(imgs, rows, cols):
    assert len(imgs) == rows*cols

    w, h = imgs[0].size
    grid = Image.new('RGB', size=(cols*w, rows*h))
    grid_w, grid_h = grid.size

    for i, img in enumerate(imgs):
        grid.paste(img, box=(i%cols*w, i//cols*h))
    return grid
def retrieve_timesteps(
    scheduler,
    num_inference_steps: Optional[int] = None,
    device: Optional[Union[str, torch.device]] = None,
    timesteps: Optional[List[int]] = None,
    sigmas: Optional[List[float]] = None,
    **kwargs,
):
    if timesteps is not None and sigmas is not None:
        raise ValueError("Only one of `timesteps` or `sigmas` can be passed. Please choose one to set custom values")
    if timesteps is not None:
        accepts_timesteps = "timesteps" in set(inspect.signature(scheduler.set_timesteps).parameters.keys())
        if not accepts_timesteps:
            raise ValueError(
                f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom"
                f" timestep schedules. Please check whether you are using the correct scheduler."
            )
        scheduler.set_timesteps(timesteps=timesteps, device=device, **kwargs)
        timesteps = scheduler.timesteps
        num_inference_steps = len(timesteps)
    elif sigmas is not None:
        accept_sigmas = "sigmas" in set(inspect.signature(scheduler.set_timesteps).parameters.keys())
        if not accept_sigmas:
            raise ValueError(
                f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom"
                f" sigmas schedules. Please check whether you are using the correct scheduler."
            )
        scheduler.set_timesteps(sigmas=sigmas, device=device, **kwargs)
        timesteps = scheduler.timesteps
        num_inference_steps = len(timesteps)
    else:
        scheduler.set_timesteps(num_inference_steps, device=device, **kwargs)
        timesteps = scheduler.timesteps
    return timesteps, num_inference_steps

class StableDiffusionTest():
    def __init__(self,model_path,text_encoder_path,text_encoder_path1,text_encoder_path2,proj_path,proj_t5_path):
        super().__init__()
        self.transformer = SD3Transformer2DModel.from_pretrained(model_path, subfolder="transformer",torch_dtype=dtype).to(device)
        self.vae = AutoencoderKL.from_pretrained(model_path, subfolder="vae").to(device,dtype=dtype)
        self.scheduler = FlowMatchEulerDiscreteScheduler.from_pretrained(model_path, subfolder="scheduler")

        self.vae_scale_factor = (
            2 ** (len(self.vae.config.block_out_channels) - 1) if hasattr(self, "vae") and self.vae is not None else 8
        )
        self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor)
        self.default_sample_size = (
            self.transformer.config.sample_size
            if hasattr(self, "transformer") and self.transformer is not None
            else 128
        )

        self.text_encoder_t5 = T5EncoderModel.from_pretrained(text_encoder_path).to(device,dtype=dtype)
        self.tokenizer_t5 = T5Tokenizer.from_pretrained(text_encoder_path)
        self.text_encoder = BertModel.from_pretrained(f"{text_encoder_path1}/clip_text_encoder", False, revision=None).to(device,dtype=dtype)
        self.tokenizer = BertTokenizer.from_pretrained(f"{text_encoder_path1}/tokenizer")

        self.text_encoder2, _, _ = open_clip.create_model_and_transforms('xlm-roberta-large-ViT-H-14', pretrained=text_encoder_path2)
        self.tokenizer2 = open_clip.get_tokenizer('xlm-roberta-large-ViT-H-14')
        self.text_encoder2.text.output_tokens = True
        self.text_encoder2 = self.text_encoder2.to(device,dtype=dtype)

        self.proj = MLP(2048, 2048, 2048, 4096, use_residual=False).to(device,dtype=dtype)
        self.proj.load_state_dict(torch.load(proj_path, map_location="cpu"))
        self.proj_t5 = Transformer(d_model=4096, n_heads=8, out_dim1=2048, out_dim2=4096).to(device,dtype=dtype)
        self.proj_t5.load_state_dict(torch.load(proj_t5_path, map_location="cpu"))

    def encode_prompt(self, prompt, device, do_classifier_free_guidance=True, negative_prompt=None):
        batch_size = len(prompt) if isinstance(prompt, list) else 1
        text_input_ids_t5 = self.tokenizer_t5(
            prompt,
            padding="max_length",
            max_length=77,
            truncation=True,
            add_special_tokens=False,
            return_tensors="pt",
        ).input_ids.to(device)

        text_embeddings = self.text_encoder_t5(text_input_ids_t5)
        text_inputs = self.tokenizer(
            prompt,
            padding="max_length",
            max_length=77,
            truncation=True,
            return_tensors="pt",
        )
        input_ids = text_inputs.input_ids.to(device)
        attention_mask = text_inputs.attention_mask.to(device)
        encoder_hidden_states  = self.text_encoder(input_ids,attention_mask=attention_mask)[0]
        text_input_ids = self.tokenizer2(prompt).to(device)
        _,encoder_hidden_states2  = self.text_encoder2.encode_text(text_input_ids)
        encoder_hidden_states = torch.cat([encoder_hidden_states, encoder_hidden_states2], dim=-1)

        encoder_hidden_states_t5 = text_embeddings[0]
        encoder_hidden_states = self.proj(encoder_hidden_states)

        add_text_embeds,encoder_hidden_states_t5 = self.proj_t5(encoder_hidden_states_t5.half())
        prompt_embeds = torch.cat([encoder_hidden_states, encoder_hidden_states_t5], dim=-2) 

        # get unconditional embeddings for classifier free guidance
        if do_classifier_free_guidance:
            if negative_prompt is None:
                uncond_tokens = [""] * batch_size
            else:
                uncond_tokens = negative_prompt
            text_input_ids_t5 = self.tokenizer_t5(
                uncond_tokens,
                padding="max_length",
                max_length=77,
                truncation=True,
                add_special_tokens=False,
                return_tensors="pt",
            ).input_ids.to(device)

            text_embeddings = self.text_encoder_t5(text_input_ids_t5)
            text_inputs = self.tokenizer(
                uncond_tokens,
                padding="max_length",
                max_length=77,
                truncation=True,
                return_tensors="pt",
            )
            input_ids = text_inputs.input_ids.to(device)
            attention_mask = text_inputs.attention_mask.to(device)
            encoder_hidden_states  = self.text_encoder(input_ids,attention_mask=attention_mask)[0]

            text_input_ids = self.tokenizer2(uncond_tokens).to(device)
            _,encoder_hidden_states2  = self.text_encoder2.encode_text(text_input_ids)
            encoder_hidden_states = torch.cat([encoder_hidden_states, encoder_hidden_states2], dim=-1)

            encoder_hidden_states_t5 = text_embeddings[0]
            encoder_hidden_states_uncond = self.proj(encoder_hidden_states)
 
            add_text_embeds_uncond,encoder_hidden_states_t5_uncond = self.proj_t5(encoder_hidden_states_t5.half())
            prompt_embeds_uncond = torch.cat([encoder_hidden_states_uncond, encoder_hidden_states_t5_uncond], dim=-2)

            prompt_embeds = torch.cat([prompt_embeds_uncond, prompt_embeds], dim=0)
            pooled_prompt_embeds = torch.cat([add_text_embeds_uncond, add_text_embeds], dim=0)

        return prompt_embeds,pooled_prompt_embeds


    def prepare_latents(
        self,
        batch_size,
        num_channels_latents,
        height,
        width,
        dtype,
        device,
        generator,
        latents=None,
    ):
        if latents is not None:
            return latents.to(device=device, dtype=dtype)

        shape = (
            batch_size,
            num_channels_latents,
            int(height) // self.vae_scale_factor,
            int(width) // self.vae_scale_factor,
        )

        if isinstance(generator, list) and len(generator) != batch_size:
            raise ValueError(
                f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
                f" size of {batch_size}. Make sure the batch size matches the length of the generators."
            )

        latents = torch.randn(shape, generator=generator, dtype=dtype).to(device)

        return latents

    @property
    def guidance_scale(self):
        return self._guidance_scale

    @property
    def clip_skip(self):
        return self._clip_skip

    # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
    # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
    # corresponds to doing no classifier free guidance.
    @property
    def do_classifier_free_guidance(self):
        return self._guidance_scale > 1

    @property
    def joint_attention_kwargs(self):
        return self._joint_attention_kwargs

    @property
    def num_timesteps(self):
        return self._num_timesteps

    @property
    def interrupt(self):
        return self._interrupt

    @torch.no_grad()
    def __call__(
        self,
        prompt: Union[str, List[str]] = None,
        prompt_2: Optional[Union[str, List[str]]] = None,
        prompt_3: Optional[Union[str, List[str]]] = None,
        height: Optional[int] = None,
        width: Optional[int] = None,
        num_inference_steps: int = 28,
        timesteps: List[int] = None,
        guidance_scale: float = 7.0,
        negative_prompt: Optional[Union[str, List[str]]] = None,
        negative_prompt_2: Optional[Union[str, List[str]]] = None,
        negative_prompt_3: Optional[Union[str, List[str]]] = None,
        num_images_per_prompt: Optional[int] = 1,
        generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
        latents: Optional[torch.FloatTensor] = None,
        prompt_embeds: Optional[torch.FloatTensor] = None,
        negative_prompt_embeds: Optional[torch.FloatTensor] = None,
        pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
        negative_pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
        output_type: Optional[str] = "pil",
        return_dict: bool = True,
        joint_attention_kwargs: Optional[Dict[str, Any]] = None,
        clip_skip: Optional[int] = None,
        callback_on_step_end: Optional[Callable[[int, int, Dict], None]] = None,
        callback_on_step_end_tensor_inputs: List[str] = ["latents"],
    ):
        height = height or self.default_sample_size * self.vae_scale_factor
        width = width or self.default_sample_size * self.vae_scale_factor

        self._guidance_scale = guidance_scale
        self._clip_skip = clip_skip
        self._joint_attention_kwargs = joint_attention_kwargs
        self._interrupt = False

        if prompt is not None and isinstance(prompt, str):
            batch_size = 1
        elif prompt is not None and isinstance(prompt, list):
            batch_size = len(prompt)
        else:
            batch_size = prompt_embeds.shape[0]


        prompt_embeds,pooled_prompt_embeds = self.encode_prompt(prompt, device)

        timesteps, num_inference_steps = retrieve_timesteps(self.scheduler, num_inference_steps, device, timesteps)
        num_warmup_steps = max(len(timesteps) - num_inference_steps * self.scheduler.order, 0)
        self._num_timesteps = len(timesteps)

        num_channels_latents = self.transformer.config.in_channels
        latents = self.prepare_latents(
            batch_size * num_images_per_prompt,
            num_channels_latents,
            height,
            width,
            prompt_embeds.dtype,
            device,
            generator,
            latents,
        )

        for i, t in tqdm(enumerate(timesteps)):
            if self.interrupt:
                continue
            latent_model_input = torch.cat([latents] * 2) if self.do_classifier_free_guidance else latents
            timestep = t.expand(latent_model_input.shape[0]).to(dtype=dtype)

            noise_pred = self.transformer(
                hidden_states=latent_model_input,
                timestep=timestep,
                encoder_hidden_states=prompt_embeds.to(dtype=self.transformer.dtype),
                pooled_projections=pooled_prompt_embeds.to(dtype=self.transformer.dtype),
                joint_attention_kwargs=self.joint_attention_kwargs,
                return_dict=False,
            )[0]

            if self.do_classifier_free_guidance:
                noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
                noise_pred = noise_pred_uncond + self.guidance_scale * (noise_pred_text - noise_pred_uncond)

            latents_dtype = latents.dtype
            latents = self.scheduler.step(noise_pred, t, latents, return_dict=False)[0]

            if latents.dtype != latents_dtype:
                if torch.backends.mps.is_available():
                    latents = latents.to(latents_dtype)

            if callback_on_step_end is not None:
                callback_kwargs = {}
                for k in callback_on_step_end_tensor_inputs:
                    callback_kwargs[k] = locals()[k]
                callback_outputs = callback_on_step_end(self, i, t, callback_kwargs)

                latents = callback_outputs.pop("latents", latents)
                prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds)
                negative_prompt_embeds = callback_outputs.pop("negative_prompt_embeds", negative_prompt_embeds)
                negative_pooled_prompt_embeds = callback_outputs.pop(
                    "negative_pooled_prompt_embeds", negative_pooled_prompt_embeds
                )

        if output_type == "latent":
            image = latents
        else:
            latents = (latents / self.vae.config.scaling_factor) + self.vae.config.shift_factor
            image = self.vae.decode(latents, return_dict=False)[0]
            image = self.image_processor.postprocess(image, output_type=output_type)

        return image


if __name__ == '__main__':
    device = "cuda" 
    dtype = torch.float16

    text_encoder_path = 'google/umt5-xxl'
    text_encoder_path1 = "Tencent-Hunyuan/HunyuanDiT/t2i"
    text_encoder_path2 = 'laion/CLIP-ViT-H-14-frozen-xlm-roberta-large-laion5B-s13B-b90k/open_clip_pytorch_model.bin'

    model_path = "stabilityai/stable-diffusion-3-medium-diffusers"
    proj_path =  "OPPOer/MultilingualSD3-adapter/pytorch_model.bin"
    proj_t5_path =  "OPPOer/MultilingualSD3-adapter/pytorch_model_t5.bin"

    sdt = StableDiffusionTest(model_path,text_encoder_path,text_encoder_path1,text_encoder_path2,proj_path,proj_t5_path)

    batch=2
    height = 1024
    width = 1024      
    while True:
        raw_text = input("\nPlease Input Query (stop to exit) >>> ")
        if not raw_text:
            print('Query should not be empty!')
            continue
        if raw_text == "stop":
            break
        images = sdt([raw_text]*batch,height=height,width=width)
        grid = image_grid(images, rows=1, cols=batch)
        grid.save("MultilingualSD3.png")


```
To learn more check out the [diffusers](https://huggingface.co/docs/diffusers/main/en/api/pipelines/flux) documentation


# License
The adapter itself is Apache License 2.0, but it must follow the license of the main model.