--- language: - "ja" tags: - "japanese" - "masked-lm" - "modernbert" datasets: - "globis-university/aozorabunko-clean" - "wikimedia/wikipedia" license: "apache-2.0" pipeline_tag: "fill-mask" mask_token: "[MASK]" widget: - text: "日本に着いたら[MASK]を訪ねなさい。" --- # modernbert-base-japanese-wikipedia ## Model Description This is a ModernBERT model pre-trained on Japanese Wikipedia and 青空文庫 texts. NVIDIA A100-SXM4-40GB×8 took 56 hours 49 minutes for training. You can fine-tune `modernbert-base-japanese-wikipedia` for downstream tasks, such as [POS-tagging](https://huggingface.co/KoichiYasuoka/modernbert-base-japanese-wikipedia-upos), [dependency-parsing](https://huggingface.co/KoichiYasuoka/modernbert-base-japanese-wikipedia-ud-square), and so on. ## How to Use ```py from transformers import AutoTokenizer,AutoModelForMaskedLM tokenizer=AutoTokenizer.from_pretrained("KoichiYasuoka/modernbert-base-japanese-wikipedia") model=AutoModelForMaskedLM.from_pretrained("KoichiYasuoka/modernbert-base-japanese-wikipedia",trust_remote_code=True) ``` ### Reference 安岡孝一: [青空文庫ModernBERTモデルによる国語研長単位係り受け解析](http://hdl.handle.net/2433/291645), 情報処理学会研究報告, Vol.2025-CH-137『人文科学とコンピュータ』, No.10 (2025年2月8日), pp.1-7.