--- library_name: transformers license: apache-2.0 base_model: facebook/wav2vec2-xls-r-1b tags: - generated_from_trainer model-index: - name: wav2vec2-1b-E50_freq_speed results: [] --- # wav2vec2-1b-E50_freq_speed This model is a fine-tuned version of [facebook/wav2vec2-xls-r-1b](https://huggingface.co/facebook/wav2vec2-xls-r-1b) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.5279 - Cer: 15.9833 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 2 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 50 - num_epochs: 5 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Cer | |:-------------:|:------:|:----:|:---------------:|:-------:| | 27.5942 | 0.2580 | 200 | 15.1915 | 93.3799 | | 4.8195 | 0.5160 | 400 | 5.0466 | 93.8381 | | 4.6163 | 0.7741 | 600 | 4.6972 | 93.6149 | | 4.4212 | 1.0321 | 800 | 4.1616 | 89.2270 | | 3.6842 | 1.2901 | 1000 | 2.4339 | 49.4596 | | 1.7035 | 1.5481 | 1200 | 1.3759 | 31.8550 | | 1.1079 | 1.8062 | 1400 | 1.1419 | 29.9460 | | 0.8743 | 2.0642 | 1600 | 1.0240 | 27.7256 | | 0.6885 | 2.3222 | 1800 | 0.9708 | 28.9356 | | 0.6163 | 2.5802 | 2000 | 0.8797 | 27.3555 | | 0.5719 | 2.8383 | 2200 | 0.7727 | 24.1835 | | 0.4769 | 3.0963 | 2400 | 0.7156 | 23.4962 | | 0.384 | 3.3543 | 2600 | 0.6899 | 20.6180 | | 0.3428 | 3.6123 | 2800 | 0.6663 | 21.0291 | | 0.3288 | 3.8703 | 3000 | 0.5853 | 20.8353 | | 0.2779 | 4.1284 | 3200 | 0.5770 | 18.0980 | | 0.23 | 4.3864 | 3400 | 0.5491 | 16.7058 | | 0.2244 | 4.6444 | 3600 | 0.5386 | 16.0538 | | 0.2006 | 4.9024 | 3800 | 0.5279 | 15.9833 | ### Framework versions - Transformers 4.45.2 - Pytorch 2.3.1.post100 - Datasets 2.19.1 - Tokenizers 0.20.1