File size: 17,940 Bytes
e1c1753 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 |
from dreamcoder.likelihoodModel import AllOrNothingLikelihoodModel
from dreamcoder.grammar import *
from dreamcoder.utilities import get_root_dir
import os
import traceback
import subprocess
def multicoreEnumeration(g, tasks, _=None,
enumerationTimeout=None,
solver='ocaml',
CPUs=1,
maximumFrontier=None,
verbose=True,
evaluationTimeout=None,
testing=False):
'''g: Either a Grammar, or a map from task to grammar.
Returns (list-of-frontiers, map-from-task-to-search-time)'''
# We don't use actual threads but instead use the multiprocessing
# library. This is because we need to be able to kill workers.
#from multiprocess import Process, Queue
from multiprocessing import Queue
# everything that gets sent between processes will be dilled
import dill
solvers = {"ocaml": solveForTask_ocaml,
"pypy": solveForTask_pypy,
"python": solveForTask_python}
assert solver in solvers, "You must specify a valid solver. options are ocaml, pypy, or python."
likelihoodModel = None
if solver == 'pypy' or solver == 'python':
# Use an all or nothing likelihood model.
likelihoodModel = AllOrNothingLikelihoodModel(timeout=evaluationTimeout)
solver = solvers[solver]
if not isinstance(g, dict):
g = {t: g for t in tasks}
task2grammar = g
# If we are not evaluating on held out testing tasks:
# Bin the tasks by request type and grammar
# If these are the same then we can enumerate for multiple tasks simultaneously
# If we are evaluating testing tasks:
# Make sure that each job corresponds to exactly one task
jobs = {}
for i, t in enumerate(tasks):
if testing:
k = (task2grammar[t], t.request, i)
else:
k = (task2grammar[t], t.request)
jobs[k] = jobs.get(k, []) + [t]
disableParallelism = len(jobs) == 1
parallelCallback = launchParallelProcess if not disableParallelism else lambda f, * \
a, **k: f(*a, **k)
if disableParallelism:
eprint("Disabling parallelism on the Python side because we only have one job.")
eprint("If you are using ocaml, there could still be parallelism.")
# Map from task to the shortest time to find a program solving it
bestSearchTime = {t: None for t in task2grammar}
lowerBounds = {k: 0. for k in jobs}
frontiers = {t: Frontier([], task=t) for t in task2grammar}
# For each job we keep track of how long we have been working on it
stopwatches = {t: Stopwatch() for t in jobs}
# Map from task to how many programs we enumerated for that task
taskToNumberOfPrograms = {t: 0 for t in tasks }
def numberOfHits(f):
return sum(e.logLikelihood > -0.01 for e in f)
def budgetIncrement(lb):
if True:
return 1.5
# Very heuristic - not sure what to do here
if lb < 24.:
return 1.
elif lb < 27.:
return 0.5
else:
return 0.25
def maximumFrontiers(j):
tasks = jobs[j]
return {t: maximumFrontier - numberOfHits(frontiers[t]) for t in tasks}
def allocateCPUs(n, tasks):
allocation = {t: 0 for t in tasks}
while n > 0:
for t in tasks:
# During testing we use exactly one CPU per task
if testing and allocation[t] > 0:
return allocation
allocation[t] += 1
n -= 1
if n == 0:
break
return allocation
def refreshJobs():
for k in list(jobs.keys()):
v = [t for t in jobs[k]
if numberOfHits(frontiers[t]) < maximumFrontier
and stopwatches[k].elapsed <= enumerationTimeout]
if v:
jobs[k] = v
else:
del jobs[k]
# Workers put their messages in here
q = Queue()
# How many CPUs are we using?
activeCPUs = 0
# How many CPUs was each job allocated?
id2CPUs = {}
# What job was each ID working on?
id2job = {}
nextID = 0
while True:
refreshJobs()
# Don't launch a job that we are already working on
# We run the stopwatch whenever the job is being worked on
# freeJobs are things that we are not working on but could be
freeJobs = [j for j in jobs if not stopwatches[j].running
and stopwatches[j].elapsed < enumerationTimeout - 0.5]
if freeJobs and activeCPUs < CPUs:
# Allocate a CPU to each of the jobs that we have made the least
# progress on
freeJobs.sort(key=lambda j: lowerBounds[j])
# Launch some more jobs until all of the CPUs are being used
availableCPUs = CPUs - activeCPUs
allocation = allocateCPUs(availableCPUs, freeJobs)
for j in freeJobs:
if allocation[j] == 0:
continue
g, request = j[:2]
bi = budgetIncrement(lowerBounds[j])
thisTimeout = enumerationTimeout - stopwatches[j].elapsed
eprint("(python) Launching %s (%d tasks) w/ %d CPUs. %f <= MDL < %f. Timeout %f." %
(request, len(jobs[j]), allocation[j], lowerBounds[j], lowerBounds[j] + bi, thisTimeout))
stopwatches[j].start()
parallelCallback(wrapInThread(solver),
q=q, g=g, ID=nextID,
elapsedTime=stopwatches[j].elapsed,
CPUs=allocation[j],
tasks=jobs[j],
lowerBound=lowerBounds[j],
upperBound=lowerBounds[j] + bi,
budgetIncrement=bi,
timeout=thisTimeout,
evaluationTimeout=evaluationTimeout,
maximumFrontiers=maximumFrontiers(j),
testing=testing,
likelihoodModel=likelihoodModel)
id2CPUs[nextID] = allocation[j]
id2job[nextID] = j
nextID += 1
activeCPUs += allocation[j]
lowerBounds[j] += bi
# If nothing is running, and we just tried to launch jobs,
# then that means we are finished
if all(not s.running for s in stopwatches.values()):
break
# Wait to get a response
message = Bunch(dill.loads(q.get()))
if message.result == "failure":
eprint("PANIC! Exception in child worker:", message.exception)
eprint(message.stacktrace)
assert False
elif message.result == "success":
# Mark the CPUs is no longer being used and pause the stopwatch
activeCPUs -= id2CPUs[message.ID]
stopwatches[id2job[message.ID]].stop()
newFrontiers, searchTimes, pc = message.value
for t, f in newFrontiers.items():
oldBest = None if len(
frontiers[t]) == 0 else frontiers[t].bestPosterior
frontiers[t] = frontiers[t].combine(f)
newBest = None if len(
frontiers[t]) == 0 else frontiers[t].bestPosterior
taskToNumberOfPrograms[t] += pc
dt = searchTimes[t]
if dt is not None:
if bestSearchTime[t] is None:
bestSearchTime[t] = dt
else:
# newBest & oldBest should both be defined
assert oldBest is not None
assert newBest is not None
newScore = newBest.logPrior + newBest.logLikelihood
oldScore = oldBest.logPrior + oldBest.logLikelihood
if newScore > oldScore:
bestSearchTime[t] = dt
elif newScore == oldScore:
bestSearchTime[t] = min(bestSearchTime[t], dt)
else:
eprint("Unknown message result:", message.result)
assert False
eprint("We enumerated this many programs, for each task:\n\t",
list(taskToNumberOfPrograms.values()))
return [frontiers[t] for t in tasks], bestSearchTime
def wrapInThread(f):
"""
Returns a function that is designed to be run in a thread/threadlike process.
Result will be either put into the q
"""
import dill
def _f(*a, **k):
q = k.pop("q")
ID = k.pop("ID")
try:
r = f(*a, **k)
q.put(dill.dumps({"result": "success",
"ID": ID,
"value": r}))
except Exception as e:
q.put(dill.dumps({"result": "failure",
"exception": e,
"stacktrace": traceback.format_exc(),
"ID": ID}))
return
return _f
def solveForTask_ocaml(_=None,
elapsedTime=0.,
CPUs=1,
g=None, tasks=None,
lowerBound=None, upperBound=None, budgetIncrement=None,
timeout=None,
testing=None, # FIXME: unused
likelihoodModel=None,
evaluationTimeout=None, maximumFrontiers=None):
import json
def taskMessage(t):
m = {
"examples": [{"inputs": list(xs), "output": y} for xs, y in t.examples],
"name": t.name,
"request": t.request.json(),
"maximumFrontier": maximumFrontiers[t]}
if hasattr(t, "specialTask"):
special, extra = t.specialTask
m["specialTask"] = special
m["extras"] = extra
return m
message = {"DSL": g.json(),
"tasks": [taskMessage(t)
for t in tasks],
"programTimeout": evaluationTimeout,
"nc": CPUs,
"timeout": timeout,
"lowerBound": lowerBound,
"upperBound": upperBound,
"budgetIncrement": budgetIncrement,
"verbose": False,
"shatter": 5 if len(tasks) == 1 and "turtle" in str(tasks[0].request) else 10}
if hasattr(tasks[0], 'maxParameters') and tasks[0].maxParameters is not None:
message["maxParameters"] = tasks[0].maxParameters
message = json.dumps(message)
# uncomment this if you want to save the messages being sent to the solver
try:
solver_file = os.path.join(get_root_dir(), 'solver')
process = subprocess.Popen(solver_file,
stdin=subprocess.PIPE,
stdout=subprocess.PIPE)
response, error = process.communicate(bytes(message, encoding="utf-8"))
response = json.loads(response.decode("utf-8"))
except OSError as exc:
raise exc
except:
print("response:", response)
print("error:", error)
with open("message", "w") as f:
f.write(message)
print("message,", message)
assert False, "MAX RAISE"
pc = response.get("number_enumerated",0) # TODO
frontiers = {}
searchTimes = {}
for t in tasks:
solutions = response[t.name]
frontier = Frontier([FrontierEntry(program=p,
logLikelihood=e["logLikelihood"],
logPrior=g.logLikelihood(t.request, p))
for e in solutions
for p in [Program.parse(e["program"])]],
task=t)
frontiers[t] = frontier
if frontier.empty:
searchTimes[t] = None
# This is subtle:
# The search time we report is actually not be minimum time to find any solution
# Rather it is the time to find the MAP solution
# This is important for regression problems,
# where we might find something with a good prior but bad likelihood early on,
# and only later discovered the good high likelihood program
else:
searchTimes[t] = min(
(e["logLikelihood"] + e["logPrior"],
e["time"]) for e in solutions)[1] + elapsedTime
return frontiers, searchTimes, pc
def solveForTask_pypy(_=None,
elapsedTime=0.,
g=None, task=None,
lowerBound=None, upperBound=None, budgetIncrement=None,
timeout=None,
likelihoodModel=None,
evaluationTimeout=None, maximumFrontier=None, testing=False):
return callCompiled(enumerateForTasks,
g, tasks, likelihoodModel,
timeout=timeout,
testing=testing,
elapsedTime=elapsedTime,
evaluationTimeout=evaluationTimeout,
maximumFrontiers=maximumFrontiers,
budgetIncrement=budgetIncrement,
lowerBound=lowerBound, upperBound=upperBound)
def solveForTask_python(_=None,
elapsedTime=0.,
g=None, tasks=None,
lowerBound=None, upperBound=None, budgetIncrement=None,
timeout=None,
CPUs=1,
likelihoodModel=None,
evaluationTimeout=None, maximumFrontiers=None, testing=False):
return enumerateForTasks(g, tasks, likelihoodModel,
timeout=timeout,
testing=testing,
elapsedTime=elapsedTime,
evaluationTimeout=evaluationTimeout,
maximumFrontiers=maximumFrontiers,
budgetIncrement=budgetIncrement,
lowerBound=lowerBound, upperBound=upperBound)
class EnumerationTimeout(Exception):
pass
def enumerateForTasks(g, tasks, likelihoodModel, _=None,
verbose=False,
timeout=None,
elapsedTime=0.,
CPUs=1,
testing=False, #unused
evaluationTimeout=None,
lowerBound=0.,
upperBound=100.,
budgetIncrement=1.0, maximumFrontiers=None):
assert timeout is not None, \
"enumerateForTasks: You must provide a timeout."
from time import time
request = tasks[0].request
assert all(t.request == request for t in tasks), \
"enumerateForTasks: Expected tasks to all have the same type"
maximumFrontiers = [maximumFrontiers[t] for t in tasks]
# store all of the hits in a priority queue
# we will never maintain maximumFrontier best solutions
hits = [PQ() for _ in tasks]
starting = time()
previousBudget = lowerBound
budget = lowerBound + budgetIncrement
try:
totalNumberOfPrograms = 0
while time() < starting + timeout and \
any(len(h) < mf for h, mf in zip(hits, maximumFrontiers)) and \
budget <= upperBound:
numberOfPrograms = 0
for prior, _, p in g.enumeration(Context.EMPTY, [], request,
maximumDepth=99,
upperBound=budget,
lowerBound=previousBudget):
descriptionLength = -prior
# Shouldn't see it on this iteration
assert descriptionLength <= budget
# Should already have seen it
assert descriptionLength > previousBudget
numberOfPrograms += 1
totalNumberOfPrograms += 1
for n in range(len(tasks)):
task = tasks[n]
#Warning:changed to max's new likelihood model situation
#likelihood = task.logLikelihood(p, evaluationTimeout)
#if invalid(likelihood):
#continue
success, likelihood = likelihoodModel.score(p, task)
if not success:
continue
dt = time() - starting + elapsedTime
priority = -(likelihood + prior)
hits[n].push(priority,
(dt, FrontierEntry(program=p,
logLikelihood=likelihood,
logPrior=prior)))
if len(hits[n]) > maximumFrontiers[n]:
hits[n].popMaximum()
if timeout is not None and time() - starting > timeout:
raise EnumerationTimeout
previousBudget = budget
budget += budgetIncrement
if budget > upperBound:
break
except EnumerationTimeout:
pass
frontiers = {tasks[n]: Frontier([e for _, e in hits[n]],
task=tasks[n])
for n in range(len(tasks))}
searchTimes = {
tasks[n]: None if len(hits[n]) == 0 else \
min(t for t,_ in hits[n]) for n in range(len(tasks))}
return frontiers, searchTimes, totalNumberOfPrograms
|