File size: 7,858 Bytes
a83aa44
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
import torch
import torch.nn as nn
from torch.cuda.amp import autocast
from torch.utils.data import Dataset, DataLoader
from tqdm import tqdm
import math, os, sys, json, glob, time, random
from torch.optim.lr_scheduler import CosineAnnealingLR
from transformers import AutoTokenizer
from distributed_shampoo import AdamGraftingConfig, DistributedShampoo
from cut_cross_entropy import linear_cross_entropy
from torch.nn.utils import clip_grad_norm_
from utils.trainutils import count_parameters_layerwise, save_checkpoint, TBLogger

from llama_modeling.front_end import LlamaForCausalLM
from llama_modeling.config import LlamaConfig

class JSONLDataset(Dataset):
    def __init__(self, directory_path, tokenizer, seq_length=1024, 
                 text_key="text", max_files=None, batch_size=1000, 
                 pad_token_id=0):
        self.seq_length = seq_length
        self.tokenizer = tokenizer
        self.pad_token_id = pad_token_id
        self.sequences = []

        files = glob.glob(os.path.join(directory_path, "*.jsonl"))
        if max_files is not None:
            files = files[:max_files]

        text_batch = []
        for file_idx, file_path in enumerate(files):
            with open(file_path, 'r', encoding='utf-8') as f:
                for line in f:
                    try:
                        data = json.loads(line)
                        text = data.get(text_key, "")
                        if len(text) >= 100:
                            text_batch.append(text)
                            
                            if len(text_batch) >= batch_size:
                                self._process_batch(text_batch)
                                text_batch = []
                    except:
                        continue
        
        if text_batch:
            self._process_batch(text_batch)

        if self.sequences:
            self.sequences = torch.tensor(self.sequences, dtype=torch.long)
        else:
            self.sequences = torch.empty((0, seq_length), dtype=torch.long)

    def _process_batch(self, texts):
        encoded = self.tokenizer(
            texts,
            add_special_tokens=False,
            truncation=True,
            padding=False,
            return_attention_mask=False,
            return_tensors=None
        )['input_ids']

        mlen = 0
        for token_ids in encoded:
            for i in range(0, len(token_ids), self.seq_length):
                chunk = token_ids[i:i+self.seq_length]
                
                # Pad
                if len(chunk) < self.seq_length:
                    chunk += [self.pad_token_id] * (self.seq_length - len(chunk))
                
                self.sequences.append(chunk)
                mlen = max(mlen, len(chunk))
                
        print("MAX: ", mlen)

    def __len__(self):
        return len(self.sequences)

    def __getitem__(self, idx):
        return self.sequences[idx]

def train_model(model, train_loader, optimizer, device, epochs=5, forward_dtype=torch.float32):
    model.train()
    criterion = nn.CrossEntropyLoss()
    scaler = torch.amp.GradScaler("cuda")
    
    logger = TBLogger(log_dir=f'logs/run-{time.time()}')
    
    total_steps = len(train_loader) * epochs
    scheduler = CosineAnnealingLR(
        optimizer,
        T_max=total_steps,
        eta_min=5e-6 
    )
    
    model = torch.compile(
        model,
    )
    
    global_step = 0
    for epoch in range(epochs):
        running_loss = 0.0
        total_batches = 0
        progress_bar = tqdm(train_loader, desc=f'Epoch {epoch+1}/{epochs}')
        
        for batch_idx, data in enumerate(progress_bar):
            data = data.to(device)
            optimizer.zero_grad(set_to_none=True)
            
            with torch.autocast(device_type='cuda', dtype=forward_dtype):
                hidden_states, classifier_weights = model(data)
                
                loss = linear_cross_entropy(
                    hidden_states,
                    classifier_weights,
                    data,
                    shift=True,
                    reduction="mean"
                )
            
            scaler.scale(loss).backward()
            scaler.unscale_(optimizer)
            clip_grad_norm_(model.parameters(), max_norm=1.0)
            scaler.step(optimizer)
            scaler.update()
            scheduler.step()

            # Update metrics - just add the loss itself
            running_loss += loss.item()
            total_batches += 1
            global_step += 1
            avg_loss = running_loss / total_batches
            perplexity = math.exp(min(avg_loss, 100))

            progress_bar.set_postfix({
                'loss': f'{avg_loss:.4f}',
                'ppl': f'{perplexity:.2f}'
            })
            
            metrics = {
                'loss': loss.item(),
                'perplexity': perplexity,
                'learning_rate': optimizer.param_groups[0]['lr'],
                'batch_size': data.size(0)
            }

            logger.log(metrics, step=global_step, model=model, grad_checking=True)

            if batch_idx % 100 == 0:
                print(f'\nBatch {batch_idx}/{len(train_loader)}: '
                      f'Loss: {avg_loss:.4f}, '
                      f'Perplexity: {perplexity:.2f}, '
                      f'Batches Processed: {total_batches}')

        epoch_loss = running_loss / total_batches
        epoch_ppl = math.exp(min(epoch_loss, 100))
        print(f'\nEpoch {epoch+1} Summary:')
        print(f'Average Loss: {epoch_loss:.4f}')
        print(f'Perplexity: {epoch_ppl:.2f}')
        print(f'Total Batches Processed: {total_batches}\n')
        
        save_checkpoint(model, f'epoch_{epoch+1}.safetensors')

def sample_examples(dataset, tokenizer, num_samples=5):
    if len(dataset) == 0:
        print("The dataset is empty.")
        return
    
    num_samples = min(num_samples, len(dataset))
    
    sampled_indices = random.sample(range(len(dataset)), num_samples)
    
    for i, idx in enumerate(sampled_indices):
        sequence = dataset[idx]
        print(f"Sample {i + 1} (Index {idx}):")
        print(sequence)
        decoded_text = tokenizer.decode(sequence, skip_special_tokens=False, decode_special_tokens=False)
        print(decoded_text)
        print("-" * 40)
      
def main():
    BATCH_SIZE = 36
    SEQ_LENGTH = 512
    EPOCHS = 3
    DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
    tokenizer = AutoTokenizer.from_pretrained("./SmolLM2-135M-Instruct")

    config_path = "config.json"
    with open(config_path) as f:
        config_dict = json.load(f)
    config = LlamaConfig(**{k: v for k, v in config_dict.items() if k in LlamaConfig.__dataclass_fields__})

    model = LlamaForCausalLM(config).to("cuda")

    dataset = JSONLDataset(
        directory_path="./Data_big",
        tokenizer=tokenizer,
        seq_length=SEQ_LENGTH,
        text_key="text",
        max_files=None,
    )
    
    train_loader = DataLoader(
        dataset,
        batch_size=BATCH_SIZE,
        shuffle=True,
        num_workers=4,
        pin_memory=True,
        drop_last=True 
    )

    optimizer = DistributedShampoo(
        model.parameters(),
        lr=0.0001,
        betas=(0.9, 0.999),
        epsilon=1e-12,
        weight_decay=1e-05,
        max_preconditioner_dim=2048,
        precondition_frequency=100,
        start_preconditioning_step=250,
        use_decoupled_weight_decay=False,
        grafting_config=AdamGraftingConfig(
            beta2=0.999,
            epsilon=1e-12,
        ),
    )
    
    print("*"*100)
    torch.set_float32_matmul_precision('high')
    
    count_parameters_layerwise(model)

    train_model(model, train_loader, optimizer, DEVICE, EPOCHS, forward_dtype=torch.bfloat16)

if __name__ == "__main__":
    main()