File size: 1,495 Bytes
a83aa44
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
from typing import Optional, Tuple
import torch
import torch.nn as nn
import torch.nn.functional as F

from .mlp import LlamaMLP
from .config import LlamaConfig
from .rms_norm import LlamaRMSNorm
from .attention import LlamaAttention
from .diff_attn import DifferentialAttention
from .tensor_prod_attn import CausalTensorProductSelfAttn

class LlamaDecoderLayer(nn.Module):
    def __init__(self, config: LlamaConfig, layer_num):
        super().__init__()
        self.self_attn = DifferentialAttention(config, layer_num)
        self.mlp = LlamaMLP(config)
        self.input_layernorm = LlamaRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
        self.post_attention_layernorm = LlamaRMSNorm(config.hidden_size, eps=config.rms_norm_eps)

    def forward(
        self,
        hidden_states: torch.Tensor,
        attention_mask: Optional[torch.Tensor] = None,
        position_ids: Optional[torch.LongTensor] = None,
    ) -> torch.Tensor:

        residual = hidden_states
        hidden_states = self.input_layernorm(hidden_states)
        hidden_states = self.self_attn(
            hidden_states=hidden_states,
            attention_mask=attention_mask,
            position_ids=position_ids,
        )
        hidden_states = residual + hidden_states

        residual = hidden_states
        hidden_states = self.post_attention_layernorm(hidden_states)
        hidden_states = self.mlp(hidden_states)
        hidden_states = residual + hidden_states

        return hidden_states